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An empirical observation of a relationship between a striking feature of
electronic transmission through a π-system, destructive quantum inter-
ference (QI), on one hand, and the stability of diradicals on the other,
leads to the proof of a general theorem that relates the two. Subject to
a number of simplifying assumptions, in a π-electron system, QI occurs
when electrodes are attached to those positions of an N-carbon atom
N-electron closed-shell hydrocarbon where the matrix elements of the
Green’s function vanish. These zeros come in two types, which are
called easy and hard. Suppose anN+2 atom,N+2 electron hydrocarbon
is formed by substituting 2 CH2 groups at two atoms, where the elec-
trodes were. Then, if a QI feature is associated with electrode attach-
ment to the two atoms of the original N atom system, the resulting
augmented N+2 molecule will be a diradical. If there is no QI feature,
i.e., transmission of current is normal if electrodes are attached to the
two atoms, the resulting hydrocarbon will not be a diradical but will
have a classical closed-shell electronic structure. Moreover, where a
diradical exists, the easy zero is associated with a nondisjoint diradical,
and the hard zero is associatedwith a disjoint one. A related theorem is
proven for deletion of two sites from a hydrocarbon.
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Connections between concepts that at first sight seem un-
related are always intriguing, and hint at an underlying cause.

We came across one such correspondence recently, between the
existence of π-diradicals, on one hand, and quantum interfer-
ence (QI) in the transmission of electrons across a π-system on
the other.
We will say more about both diradicals and molecular trans-

mission, but let us begin with the theoretical observation, and for
that we need a simplified introduction to both phenomena.
The class of π-diradicals constitutes an important series of or-

ganic intermediates with two radical centers in their primary va-
lence structure (1−3). Their Hückel matrix has two or more zero
eigenvalues (in a choice of energy zero at the usual Coulomb in-
tegral α). Also, the molecules may exist in singlet and triplet states,
competing in ways we understand reasonably well for being the
ground state of the molecule. Trimethylenemethane (TMM),
tetramethyleneethane (TME), and m-quinodimethane (each il-
lustrated by one resonance structure in Fig. 1) are three simple
examples.
The transmission of current across single molecules is an ac-

tive theoretical and experimental field of contemporary chemical
physics (4–9). Destructive QI describes a striking quantum effect
in which transmission is much attenuated. For instance, QI oc-
curs when electrodes are attached to 1,1 or 1,3 or 2,3 carbons in
an ethylene (Fig. 2, Left) or a butadiene (Fig. 3, Top). There is
normal transmission when the electrodes are attached 1,2 or 1,4;
clearly, distance through space is not the determining factor in
this phenomenon.
Consider the attachment of two electrodes 1,1 vs. 1,2 to an eth-

ylene (substitution of two hydrogens by “linkers” to the electrodes,
such as amines, thiols, and so on), vs. the substitution of two
methylene (radical) units at these sites, generating a potential dir-
adical. We indicate in Fig. 2 whether or not QI is observed in the

molecular transmission system, and whether the primary valence
structure of the potential diradical is actually a diradical or not. The
1,2 substitution of two (cis or trans) hydrogens in ethylene yields not
a 1,4-diradical but a closed-shell system, butadiene. The 1,4-dir-
adical structure is a minor contributor to the valence bond (VB)
description of butadiene, but the fully bonded structure dominates.
Also, in the transmission system, the conductance 1,2 on ethylene is
not accompanied by QI but is efficient and normal. On the other
hand, 1,1 substitution yields a real diradical, trimethylenemethane,
and a case of QI.
Fig. 3 shows the possible substitution patterns on a butadiene

skeleton. There is a perfect correlation of diradical existence and
QI in molecular transmission.
The correlation between diminished transmission and non-

bonding molecular orbitals (NBMOs) was noticed by one of
the authors in benzene (10) and naphthalene (11). This was
partially explained by the orbital interaction between the
parent molecule and the attached atoms. This correlation has
also been noted by others in a variety of systems (12–18). The
generality is intriguing and begs for an explanation. This we
provide in this paper.

More on Transmission and Quantum Interference
The calculation of current through a molecule is most commonly
approached through the nonequilibrium Green’s function (NEGF)
formalism (19). A conceptual model for the NEGF formalism is
depicted in Fig. 4. According to the Landauer formula (20), the
current can be calculated from

I =
2e
h

Z
dETðEÞ� fLðEÞ− fRðEÞ

�
, [1]

Significance

It might seem that the existence of a dramatic diminution in
molecular conductance across a hydrocarbon (quantum inter-
ference, QI) would be unrelated to the existence of an important
class of organic molecules with two electrons in two orbitals,
diradicals. However, if you add two carbons to a planar π-elec-
tron hydrocarbon, you get a diradical if and only if there is a QI
feature in conductance when two electrodes are attached to the
molecule at the same sites. When you remove the two carbons
where the electrodes are attached, you also generate a diradical.
The connection, first empirically observed, is proven. Two kinds
of diradicals, with different ground state spin consequences, are
also easily distinguished by the relationship.
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where T is the transmission of electrons passing through a mol-
ecule and fL(R) is the Fermi distribution function for the left
(right) electrode. T can be calculated from Eq. 2 (19),

TðEÞ=Trace
�
ΓLGΓRG†

�
, [2]

where G is the Green’s function matrix and ΓL(R) is the broad-
ening function matrix for the left (right) electrode, which de-
scribes the coupling between a molecule and electrodes.
Here we assume electron transmission through the chain is

through the π-orbitals, and the Green’s function can be approximated
by the zeroth-order Green’s function G(0). Furthermore, we use, in
the transmission calculations (such as the ones in SI Appendix), a
Hückel model that has been described in detail elsewhere (21). In the
limit of zero temperature and zero bias voltage, the conductance
between the rth and sth atoms, grs, is then proportional to the square
of the absolute value of the (r, s) entry of the zeroth-order Green’s
function matrix at the Fermi energy, G(0)(EF), as follows:

grs ≈
2e2

h
γLγR

��Gðr, sÞ��2. [3]

Here 2e2/h is the quantum of conductance, γL(R) is the nonzero
element of the broadening function matrix, and G(r,s) denotes
the (r,s) entry of G(0), which is approximated by the negative of
the inverse of the Hückel–Hamiltonian matrix, −H−1.
When G(r,s) = 0, the conductance will be greatly diminished.

This is QI. The conductance, of course, will not be vanishing
even in the presence of QI, for the model we use neglects the
σ-system of the molecule. However, from the experience of many
calculations that include both σ- and π-electrons, when QI oc-
curs, it lowers the calculated (or observed) conductance by an
order of magnitude or more (22).
The condition for occurrence of QI in a one-dimensional (1D)

chain has been mathematically derived elsewhere (21). When r and
s have the same parity, i.e., they are both odd or both even, then

G(r,s) = 0. Or, when r is even and s > r odd, thenG(r,s) = 0. We call
the former zero and the latter zero “easy zero” and “hard zero,”
respectively, because of the mathematical difficulty in evaluating the
respective trigonometric sums (23). The two situations, two differ-
ent kinds of zeros of the Green’s function matrix, also have some-
what different physical consequences. The distinction has been
investigated in detail by two of the authors and coworkers (24, 25).
We will demonstrate another aspect of the difference between the
two kinds of zeros in the context of the related diradicals.
The hard and easy zeros can be related to a classification of

hydrocarbons rooted in the early days of Hückel theory (26). In a
hydrocarbon, atoms are separated into starred and unstarred ones,
every starred atom surrounded by unstarred ones. When this can
be accomplished for all atoms in a molecule, it is said to be
alternant. Obviously, hydrocarbons containing rings with an odd
number of atoms are nonalternant. An assembly of beautiful the-
orems can be proved about the energies and wave function coef-
ficients in alternant hydrocarbons. Also, the alternant character
allows the easy proof of some regularities in transmission.
In the Hückel model for transmission across a π-system, the

alternant nature of the hydrocarbon leads trivially to QI when r and
s, the sites of electrode attachment, are both starred or both
unstarred. These are precisely the easy zeros. On the other hand,
when one of the rth and sth atoms is starred and the other is
unstarred, G(r,s) is not necessarily zero. However, there are some r
and s in such cases where G(r,s) is zero, and it is these we call hard
zeros. This terminology is not limited to a 1D chain. A related

Fig. 1. Some typical diradicals (hydrogens omitted, one resonance structure).

Fig. 2. The arrows show attachment of electrodes in a molecular trans-
mission experiment (Left). The corresponding potential diradicals (Right).

Fig. 3. The arrows show attachment of electrodes in a molecular trans-
mission experiment (Top). The primary contributor in a VB description of the
corresponding potential diradical (Bottom).

Fig. 4. Schematic descriptions of a molecule in contact with the left and
right electrodes (Top) and the NEGF-based electron transport model, which
allows us to model current flow through a molecule described by the
Hamiltonian H (Bottom).
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classification, used by two of us, is “odd class” and “even class” (25).
It should be mentioned that although the Hückel model is very
good at spotting the conditions for QI (6–10), it needs to be sup-
plemented by detailed quantum mechanical transmission calcula-
tions for more detailed understanding of molecular transmission.

More on Diradicals
Two electrons in two (nearly) degenerate orbitals is the essence of
diradicals. Diradicals are not only the π-electron systems we con-
sider in this paper but also a wide variety of systems containing
heteroatoms, such as aminoxyls or verdazyls (27). The natural
concern in this class of molecules has been with the spin of the
ground state of the system, a matter on which there is extensive
literature (1–3). Diradicals of the π-type can be classified into two
types, namely disjoint and nondisjoint. Disjoint diradicals have two
NBMOs that can be chosen so that they share no common atoms,
whereas nondisjoint diradicals have those that share common atoms
(1). Fig. 5 gives an example of a disjoint and a nondisjoint diradical.
Borden and coworkers (28–30) showed that, in disjoint π-dir-

adicals, the open-shell singlet and triplet states can generally be
expected to be close in energy, but higher-order effects can often
make the open-shell singlet state more stable than the triplet state
[which, interestingly, is a violation of Hund’s rule (31)]. On the
other hand, nondisjoint diradicals generally have a triplet ground
state. Borden and coworkers also provided a simple method to
determine whether a diradical is disjoint or nondisjoint based on the
starring procedure (28, 30). If, in a diradical, the number of starred
carbons (NS) is equal to that of unstarred carbons (NU), then the
NBMOs can be chosen to be disjoint, with one NBMO confined to
the starred set of atoms and the other to the unstarred set. Oth-
erwise, when jNS – NUj = 2, the NBMOs will be nondisjoint.
Using a VB formalism, Ovchinnikov (32) reasoned that the total

spin quantum number S in an alternant hydrocarbon is equal to
jNS – NUj/2. A “classical structure” (CS) is a Lewis or Kekulé
structure with the maximum number of double bonds drawn; for
a 2N atom, 2N electron molecule, that may be N or N−2 double
bonds. Klein et al. (33) proved that the total spin quantum num-
bers S predicted by VB, CS, and MO theories are related by SVB ≤
SCS ≤ SMO. Thus, there are situations when CS might point to
a closed-shell ground state, but MO theory predicts a system with
two NBMOs. No implication is drawn here as to whether such two-
NBMO, two-electron systems are high spin or low spin; we call
them both diradicals. We will encounter several such cases at the
end of this paper. A detailed account of the singlet−triplet split-
ting in diradicals requires post-Hartree−Fock quantum mechanical
computations and is beyond the scope of this work.

Why There Might Be a Relation Between Diradical Stability
and Transmission
A single molecule can be not only a conductor of variable quality
but also a spin > 0 “high” spin compound, a molecular magnet (a
terminology we use loosely, fully aware that real magnetism is an
emergent property of an extended system). These two properties,
conductance and magnetism, are combined in the developing
field of molecular spintronics (34–36).
A measure of electronic communication can be the electronic

coupling matrix element (HAB) (37), which describes the overlap
of electronic wave functions between remote sites, in most cases
donor and acceptor. On the other hand, a measure of magnetic
interaction between localized unpaired spins typically is the ex-
change coupling constant (J), which appears in the Heisenberg-
type Hamiltonian (38) and can be approximated by half of the
splitting between the singlet and triplet states (39).
On the basis of foundational early work by Kramers (40),

Anderson (41), and McConnell (42), important correlations
between HAB and J have been theoretically and experimentally
discovered. Among the many systems investigated are dimers
containing two weakly interacting metal centers (39, 43), dinu-

clear metal complexes with bridging π-conjugated ligands (44–46),
and organic diradicals with two spins coupling via a π-stacking (47)
or a π-conjugated bridge (48).
Owing to the above-mentioned correlation, it has been sug-

gested by Ratner, Wasielewski, and coworkers (49) that both the
amplitude of magnetic coupling and the rate constant of coher-
ent electron transfer exhibit a similar exponentially decreasing
trend with respect to the distance between two spins or two redox
moieties. Furthermore, recent combined theoretical and exper-
imental studies for donor-bridge-acceptor (D-B-A) diradical
systems by Kirk, Shultz, and coworkers (12, 13) and for π-con-
jugated molecules bridged between two nitronyl nitroxide radi-
cals by Matsuda and coworkers (14–16) have shown similar
trends among magnetic coupling, electron transfer, and molec-
ular conductance, with respect to the exponential attenuation as
well as the dihedral-angle dependence. Herrmann and coworkers
(17, 18) have explored the relationship between molecular con-
ductance and magnetic coupling, but also its limit. Very recently,
Klein and coworkers have found that a high-spin π-diradical can
play an important role in molecular junctions as a spin filter (50).
In the molecular electronics community, QI has been appreciated

as an important factor that significantly reduces molecular con-
ductance, when it occurs. Various interpretations of QI exist, based
on, for example, phase (5, 6), orbital (7), local current (8), and to-
pology (9); they largely concur in associating QI with zero elements
of a Green’s function matrix, as we did (21). There are other ways to
think about QI, so Kirk et al. relate QI to excited-state contributions
to the ground-state singlet−triplet splitting in D-B-A diradicals (51).
We return now to the correlation we showed exists between

transmission in a π-system when electrodes are attached to sites r
and s of an alternant N atom, N electron hydrocarbon, and the
electronic structure of the N+2 atom, N+2 electron molecule
formed by replacing the electrode attachment sites by CH2 units.
It can be proven.

Proof of the Correlation Between Quantum Interference and
a Good Diradical Valence Structure
After attaching two atoms numbered N+1 and N+2 to the rth
and sth atoms of a parent molecule, which consists of N atoms (N
is even), the new Hückel–Hamiltonian matrix H+rs for the whole
system, including the attached atoms, is given as an (N+2) × (N+2)
block matrix,

H+rs =
�
H B
BT 0

�
, [4]

where H is the Hückel–Hamiltonian matrix for the parent mol-
ecule, dimension N × N, and 0 is the zero matrix with the

Fig. 5. An example of a nondisjoint diradical (TMM, Left) and a disjoint
diradical (TME, Right). The hydrogens are omitted from the structures, and
only the top lobe of the 2pz orbitals is shown.
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dimension of 2 × 2. B is a matrix with the dimension of N × 2.
B(r,1) and B(s,2) describe the connections between the parent
molecule and the attached atoms, being 1. The other entries of
the matrix B are zero. BT is the transposed matrix of B.
To determine the existence/absence of a zero eigenvalue of the

Hamiltonian matrixH+rs, we calculate its determinant. A method to
calculate the determinant of a 2 × 2 block matrix is found in the
mathematical literature (52, 53). We apply it to Eq. 4, obtaining

detðH+rsÞ= det
�
H B
BT 0

�
= detðHÞdet�−BTH−1B

�
. [5]

Note that H is invertible as long as the parent molecule does not
have any MO at E = 0, which is an NBMO. To put it another
way, the parent molecule must be a closed-shell molecule.
Throughout this paper, we use the convention that the Hückel

α is set equal to zero, and that the energy is measured in units of
β, the Hückel resonance integral (which is also the transfer in-
tegral t of tight-binding theory). The determinants carry appro-
priate energy units, but these are not shown.
Because −H−1 is the zeroth Green’s function at the Fermi

level for the parent molecule, i.e., G(0), Eq. 5 can be rewritten in
the form

detðH+rsÞ= detðHÞdet
	
BTGð0ÞB



. [6]

Because BT is a 2 × N matrix, G(0) is an N × N matrix, and B is
an N × 2 matrix, BT G(0)B is a 2 × 2 matrix, and can be written
as follows:

BTGð0ÞB=

2
66664

XN
i

XN
j

�
BT�

1i

�
Gð0Þ�

ij½B�j1
XN
i

XN
j

�
BT�

1i

�
Gð0Þ�

ij½B�j2
XN
i

XN
j

�
BT�

2i

�
Gð0Þ�

ij½B�j1
XN
i

XN
j

�
BT�

2i

�
Gð0Þ�

ij½B�j2

3
77775.

[7]

Note that only [BT]1r, [B
T]2s, [B]r1, and [B]s2 entries are 1 and

the others are 0 in the matrices BT and B. Therefore, Eq. 7 can
be simplified as

BTGð0ÞB=
�
Gðr, rÞ Gðr, sÞ
Gðs, rÞ Gðs, sÞ

�
. [8]

G(r,r) and G(s,s) are always 0, which holds true for all alternant
hydrocarbons (22, 25). Further, it is evident that G(r,s) = G(s,r).
Hence, the determinant of BT G(0)B is −[G(r,s)]2. Eventually, we
arrive at the following equation:

detðH+rsÞ=−detðHÞ�Gðr, sÞ�2. [9]

Eq. 9 is applicable to any π-system, as long as the parent
molecule is an alternant hydrocarbon without any NBMO. Be-
cause the conductance between rth and sth atoms in the parent
molecule is proportional to jG(r,s)j2, Eq. 9 implies that the con-
ductance should be proportional to jdet(H+rs)/det(H)j. Determi-
nantal relations similar to those described here have recently been
published by the Geerlings group (54). Another relationship holds
for nonalternant systems (with odd-membered carbon rings); this
is provided in SI Appendix.
The det(H) may, by a well-known theorem, be also repre-

sented by the product of the eigenvalues of H. That product is a
constant (in units of βN) depending upon the parent molecule.
For example, det(H) = iN, where i denotes the imaginary unit,
for linear chains consisting of even-numbered N atoms, and
det(H) = −4 for cyclic [4n + 2] π-systems, such as benzene (23).

Therefore, the site-specific conductance depends on jdet(H+rs)j.
This suggests the conductance is determined not only by the in-
verse of the Hamiltonian H, or G(0), but also by the determinant, or
the product of the MO energies, of the “augmented Hamiltonian”
H+rs. Experts in graph theory and linear algebra might find a still
more fascinating translation of this equation.
The reason why we calculate the determinant is to make a bridge

between the Green’s function elements and diradical existence.
According to Eq. 9, when QI occurs in electron transport between
the rth and sth atoms of the parent molecule, i.e., G(r,s) = 0, the
molecule obtained by attaching two atoms to the rth and sth atoms,
which hereafter we will call the “augmented molecule,” will have at
least one MO level at E = 0, or NBMO. However, the total number
of the π-orbitals of the augmented molecule, i.e., N+2, is even, and
the Coulson−Rushbrooke pairing theorem (55), which states that
MO levels are symmetrically distributed with respect to E = 0,
applies to the augmented system. Hence, there must be not one but
at least two NBMOs. This also implies that the augmented mole-
cule should be a diradical. On the other hand, when QI does not
occur, i.e., G(r,s) ≠ 0, the augmented molecule cannot have any
MO at E = 0. Therefore, it must be a closed-shell molecule.

The Same Is True for Deleting Two Atoms
Consider a process complementary to the augmentation just
discussed, now of deleting the rth and sth atoms from the parent
molecule. We will call the molecule resulting from atom removal
the “reduced molecule,” and its Hamiltonian will be called H−rs.
In SI Appendix, we prove the following equation:

detðH+rsÞ= detðH�rsÞ. [10]

Note that we assume β = 1; otherwise, this equation should read
det(H+rs) = β4det(H−rs). Eq. 10 suggests that if an augmented
molecule, in which two atoms are attached to the rth and sth
atoms, is a diradical, the reduced molecule, in which the rth and
sth atoms are deleted, is also a diradical or can be divided into two
monoradicals. If r = s, the reduced molecule consists of odd-num-
bered N – 1 atoms, resulting in a monoradical, where det(H−rs) = 0.
This is consistent with the fact that if r = s, the augmented mol-
ecule is always a diradical, where det(H+rs) = 0.
Let us look at some examples. Fig. 6 shows processes of

attaching two atoms to the rth and sth atoms, and, comple-
mentarily, deleting the rth and sth atoms in naphthalene. In the
normal conductance cases (1,4; 1,5), atom addition leads to a
closed-shell molecule, and so does atom removal, leading to a
closed-shell molecule (1,5) or two closed-shell molecules (1,4).
In the electrode attachment instances where transmission shows

Fig. 6. Atom addition and atom removal for two sites in naphthalene.
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a QI feature, atom addition leads to a diradical, and atom re-
moval also leads to a diradical (1,8 case) or two monoradicals
(1,3 case).

Another Way to Reach the Same Conclusion
In the heyday of Hückel theory and reactivity indices, in 1952,
Dewar and Longuet-Higgins (56) derived a remarkable relation
between the determinant of the Hückel matrix and the number
of Kekulé structures (K). In 1958, Ham (57) showed how K and
the Pauling bond order (58), the ratio of Kekulé structures for
the molecule with two atoms deleted, K−rs, to K, are connected.
In 1972, this was further developed by Graovac et al. (59) on the
basis of the Sachs graph. In 1976, Hosoya and Hosoi (60) derived
a relation between the Pauling bond order and the determinant
of the Hückel matrix. In 1980, Aono and Nishikawa (61) gave the
connection between the determinant of Hückel matrix and the
Green’s function. In the 1970s, Caroli et al. (62) derived a re-
lation between the Green’s function and electron transport,
which was further developed in the 1990s by many people, in-
cluding Datta (19) and Ratner et al. (63). Recently, several
groups have traced the consequences of the relation between the
inverse of Hückel matrix and electron transport; references are
given in ref. 21. Also, Stuyver et al. have recently pointed out
a relation between molecular conductance and atom−atom
polarizability (64).
Earlier this year, Stuyver et al. (65) summarized these diverse

relations and derived the following equation:

grs ∝
�
K−rs

K

�2

, [11]

where K is the number of Kekulé structures for the parent mol-
ecule and K−rs is the number of Kekulé structures when the rth
and sth atoms are deleted from the parent molecule. We can
derive an interesting determinant equation that relates Eq. 11 to
SI Appendix, Eq. S12. Because we proved Eq. 10, Eq. 11 can then
be rewritten as follows:

grs ∝
�
K−rs

K

�2

=
�
K+rs

K

�2

, [12]

where K+rs is the number of Kekulé structures when two atoms
are attached to the rth and sth atoms.
From Eq. 12, we can derive the same conclusion as we reached

earlier. If QI occurs between the rth and sth atoms in the parent
molecule (grs = 0), the augmented molecule and reduced mole-
cule are either a diradical or two monoradicals, for which no
(full) Kekulé structure can be drawn, i.e., K+rs = K−rs = 0.

Correlation and, with It, a Bonus
The relation derived above between QI and diradical existence is
summarized in Table 1. The bonus is the connection between
easy and hard zeros and the nondisjoint or disjoint nature of
the diradicals.
Because the parent molecule (the molecule before two CH2

units are attached to it or two atoms are deleted) must be a closed-

shell molecule (S = 0), NS = NU. Therefore, the number of stars on
the two attached atoms or two deleted atoms determines whether
the resulting diradical is disjoint or nondisjoint. Easy zero QI oc-
curs when the rth and sth atoms are both starred or both unstarred.
In this case, the attached two atoms are both unstarred or both
starred, respectively. Therefore, in the resulting diradicals, jNS –

NUj = 2, leading to a nondisjoint diradical. The same is true for the
process of deleting two atoms. On the other hand, the hard zero QI
occurs when one of the rth and sth atoms is starred and the other is
unstarred. In the resulting diradical, NS = NU, leading to a disjoint
diradical. The same is true for the process of deleting two atoms.
Figs. 2 and 3 summarize the correlation for N = 2 and N = 4

diradicals based on an ethylene or butadiene core. When both two-
carbon atoms are attached to C1 atom of ethylene, a well-studied
nondisjoint diradical, TMM (1,3), is generated. For N = 4, a bu-
tadiene framework, the 1,1 and 1,3 cases, which correspond to an
easy zero case, provide a nondisjoint diradical, which can be viewed
as a derivative of TMM. The 2,3 case, which corresponds to a hard
zero case, provides a well-studied disjoint diradical, TME (1,3).
Further examples of the relationship we have proven, for

linear chain skeletons with N = 6 and N = 8 are shown in SI
Appendix, Figs. S1 and S2. Still other examples are shown in SI
Appendix, Figs. S3, S13, and S16. Here we illustrate but two
cases, each with its own special features.
First, consider an example of the consequence of the hard zero

in a cyclic system, here derived from 1,4-paraquinodimethane
(p-QDM), as shown in Fig. 7. Recently, the transmission properties

Table 1. Summary of the derived relation between the QI and diradical existence

Attachment/removal sites (r,s)* Green’s function Conductance Augmented/reduced molecule†

(S,S) G(r,s) = 0 QI (easy zero) diradical (nondisjoint)
(U,U) G(r,s) = 0 QI (easy zero) diradical (nondisjoint)
(S,U) or (U,S) G(r,s) = 0 QI (hard zero) diradical (disjoint)

G(r,s) ≠ 0 conductive closed shell

*S means a starred atom, and U means an unstarred atom.
†This holds true as long as r ≠ s and the reduced molecule is a single molecule (not divided into two).

Fig. 7. The 1,4-paraquinodimethane molecule, with its numbering system
(Top). The arrows show attachment of electrodes in a molecular transmission
experiment (Middle). The primary contributor in a VB description of the
corresponding potential diradical (Bottom).
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through p-QDM have been reported by two of the authors and
coworkers (25). It was shown that the 2,5 and 2,6 connections lead
to QI; the QI features of the 2,5 and 2,6 connections are classified
into hard zero and easy zero, respectively. From Fig. 7, we can see
that the resulting augmented molecules of the 2,5 case (hard zero)
and 2,6 case (easy zero) are a disjoint diradical and a nondisjoint
diradical, respectively. They are called tetramethylenebenzenes
(TMBs). The TMB resulting from 2,5 substitution has attracted
interest in the diradical community (29), being predicted theo-
retically (66) and observed experimentally (67) to have a singlet
ground state, a consequence of the disjoint nature of the NBMOs.
On the other hand, the 2,3 case exhibits neither a QI feature
nor a diradical structure (see SI Appendix, Fig. S11 for the
transmission spectra).
Second, the Green’s function allows one to identify diradicals

that are less obvious. Consider benzocyclobutadiene 1 (see Fig.
8). Although this molecule is a highly reactive compound that
readily undergoes dimerization, it has been actually isolated in
an Ar matrix at very low temperature (68). The 3,6 connection of
electrodes to this molecule exhibits QI (see SI Appendix, Fig. S12
and ref. 69), yet its augmented structure 2 seems to be described
by an all-bonded Lewis or Kekulé resonance structure. However,
things are not quite as they seem.
Parent molecule 1 itself is a closed-shell molecule with a

highest occupied molecular orbital−lowest occupied molecular
orbital gap of 0.53β at the Hückel level. Therefore, Eq. 9 is ap-
plicable to this system, and G(3,6) = 0, which is obtained from
the calculation of the inverse of the Hamiltonian matrix for
molecule 1, leading to det(H+rs) = 0. The existence of at least two
NBMOs in molecule 2 is predicted. Also, remarkably, molecule 2
indeed has a pair of degenerate NBMOs, shown in Fig. 8. The
NBMOs suggest that molecule 2 should be a disjoint diradical,
which is consistent with the QI due to the hard zero.
Two smaller systems of this type are based on butalene 3 and

dimethylenecyclobutene 4. The 2,3 electrode attachment to the
former and 5,6 electrode attachment to the latter lead to hard-
zero Green’s function elements (Fig. 9), and to disjoint diradicals
if methylenes are added at these sites. Incidentally, transition
metal complexes of the 5,6 expanded hydrocarbons, aka divinyl-
cyclobutadiene, are known (70).
Molecules 2, 5, and 6 belong to a rare class of hydrocarbons

for which a classical, Lewis or Kekulé, structure is misleading—
despite such a structure being readily drawn, the molecule is
most certainly a diradical, in having two NBMOs and two elec-

trons in them. Cyclobutadiene and planar cyclooctatetraene are
the archetypes here. This kind of discrepancy between the
presence of NBMOs and CS theory was recognized by Klein
et al. (33). For it to manifest itself, one needs 4n-membered
rings. Such structures are troublesome in a number of ways,
yielding abnormal Pauling bond orders, i.e., larger than unity or
negative (60, 71). Whether the ground state of the molecule is a
singlet or triplet requires further analysis; here the consider-
ations of Ovchinnikov and of Klein et al. (33) are guides.

Conclusions
We have constructed a conceptual bridge between two concepts
in different fields of chemistry, namely QI, in molecular conduc-
tance, and diradical existence. QI is characterized by zero ele-
ments in the matrix representation of the Green’s function. We
prove a theorem that relates such QI features to the determinant
of the Hückel matrix of a molecule augmented by replacing the
two electrode attachments with two radical sites or reduced by
deleting the two atoms, to which electrodes are attached.
The existence of QI in transmission thus simultaneously im-

plies the existence of a diradical, and vice versa. The relationship
is a strong one for π-alternant systems, and can be used in either
direction—relating the observation or calculation of QI to the
existence of a diradical, or using diradical character to infer QI
in transmission.
There is also further detail in the correspondence. Based on the

starring procedure for alternant hydrocarbons, the two types of QI,
termed by us hard zero and easy zero, find their counterparts in two
types of diradicals of the augmented/reduced hydrocarbon, namely
disjoint and nondisjoint. The validity of this remarkable relationship
is checked not only for simple linear and cyclic π-systems, such as
polyenes and benzene, but also for more complicated π-systems,
such as p-QDM, benzeocyclobutadiene, butalene, and dimethy-
lenecyclobutene. It may be—as some of the latter cases, which
contain a 4n-membered ring, show—that one can write a classical
Lewis or Kekulé structure for a system, yet it still is a diradical,
and the relationship between QI and diradical character holds.
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Fig. 9. The 2,3 and 5,6 expanded hydrocarbons for butalene 3 (Top) and
dimethylenecyclobutene 4 (Bottom).

Fig. 8. Schematic representation of attaching two atoms to the third and
sixth atoms in benzocyclobutadiene (Top), and twofold degenerate NBMOs
of the augmented molecule (2) (Bottom).
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