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ABSTRACT: We explore the chemical bonding and band gap in the metal
halide perovskites ABX3 (where A is a cation, B a metal dication, and X a
halide) through detailed calculations and a qualitative, symmetry-based
bonding analysis that moves between chemical and physical viewpoints,
covering every aspect of bonding over a range of 15 eV around the band gap.
We show how the gap is controlled by metal−halide orbital interactions that
give rise to a characteristic mirror of bands, a bonding signpost which first
shows up in turning on and off the scalar relativistic effects in computation of
the band structure of CsPbBr3. The mirror is made up by a Pb 6s and Br 4p
combination that moves in an understandable way through the Brillouin zone,
setting the valence band maximum. The mirror is also there when the A
cation is changed to an organocation and is robust enough to persist through
moderate distortions of the lattice. The analysis predicts how a modification
of Pb2+ to Sn2+ and Ge2+ and a variation of the halide X influence the band
gap. In describing in equal detail the lowest three conduction bands, a second mirror of bonding emerges. For CsPbBr3, this
mirror is made up by Pb 6p and Br 4p combinations. An understanding of the way these combinations move in reciprocal space
to set the conduction band minimum allows us to see why the band gap is direct. The orbital analysis provides a chemical and
intuitive picture of band gap engineering in this popular class of materials.

■ INTRODUCTION

Perovskites are a familiar class of crystalline solids with the
generic formula ABX3, where A and B are cations and X is an
anion. Perovskites are old, even to human beings.1 And they
are newmeaning that our interest in them, as documented
by the literature, has grown tremendously in recent times.2−5

Two classes of perovskites dominate the thousands of articles
studying this group of extended structures: those with X =
oxide, and those with X = halide. In this first paper, we will
focus on the halide class, which is responsible for the booming
interest of late, much related to a potential in outperforming
silicon-based technology in photovoltaics. In a second paper
we will analyze the bonding in the oxide perovskites and
unravel the similarities and differences between the two classes.
Our perspective will cross physics and materials science, using
the full apparatus of band theory, but we will also build a
bridge with chemistry. The aim is a connection that will allow
people to systematically relate chemical bonding to band gap
(and other characteristics) within the perovskite ABX3
structure, and to rationally design materials with targeted
properties.
The cubic perovskite archetype (space group Pm3̅m) is

shown in Figure 1. The lattice vectors a1, a2, and a3 lie parallel
to the vertices of the conventional unit cell, a cube (structure
2). The simple cubic structure deforms in a myriad of
ways6−8we will eventually look at some of these, but we
begin in the most symmetrical structure. The coordination
environment is octahedral for the B ionsin fact, the structure
is just as easily described as built from corner- or vertex-sharing

BX6 octahedra (structure 3). The coordination of the A ions is
cuboctahedral in X, cubic in B. The X ions are usually seen as
two-coordinate, yet one could worry about X−A interactions
(among others).
In general, stable perovskites follow stoichiometries that

relate to common oxidation states. For the halides, in ABX3, A
is typically a monovalent cation, B a divalent cation (such as
Pb2+), and X a monovalent anion, typically Br − or I−.

■ RESULTS AND DISCUSSION
Cubic CsPbBr3. Even though the A cation does not

contribute to bands near the Fermi level (as we will see), its
size and shape are important for the symmetry, stability, and
properties of the halide perovskite material.9 In all-inorganic
halide perovskites, Cs+ is the popular choice for A. The so-
called hybrid organic−inorganic variants typically contain
methylammonium (CH3NH3

+) or formamidinium (CH-
(NH2)2

+) as the A ion. These organics improve separation of
photocarriers upon photoexcitation, but the materials also
suffer from a decrease in structural stability. A recent report
suggests that the two effects are correlated.10

The lead bromide perovskite is known to take up the cubic
Pm3̅m crystal structure in both CsPbBr3 and CH3NH3-
PbBr3.

11−14 We begin with the simple, all-inorganic archetype
CsPbBr3, noting that this structure distorts toward tetragonal
P4/mbm at temperatures below 130 °C, and then ortho-
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rhombic Pnma below 88 °C. Figure 2 displays the structure
optimized within cubic symmetry. The Pb−Br bond lengths
are 3.0 Å, and all Br−Pb−Br angles are 90° or 180°.

The computed band structure of ideally cubic CsPbBr3 is
shown in Figure 3; it is representative of a few hundred similar
band structures in literature. The details of the present
calculations, in which atomic Slater-type orbital (STO) basis
sets were employed, can be found in the Computational

Methods section at the end of this paper. We note that the
one-electron energy in this and all calculations is shown on an
absolute energy scale, referenced against the vacuum level
instead of the more typical Fermi level referencecomparison
at absolute energies will be of some significance in our
upcoming analysis.
On the right of the band structure in Figure 3, we have

drawn the Brillouin zone (BZ) for the simple cubic lattice. This
is the primitive cell in reciprocal space, and it contains all wave
vectors k that yield plane waves eik·r with the periodicity of the
cubic lattice. The BZ will become important later, when
constructing crystal orbitals. For now, we introduce it both to
show that it is also cubicwith reciprocal-lattice vectors b1, b2,
and b3 pointing to the same directions as a1, a2, and a3and to
show the path across high-symmetry points along which the
band energies run in the plot to its left. We are aware that a
different path (Γ-X-M-Γ-R-X) is commonly used in other
papers, but the reason for our choice will become apparent.
The plot features a characteristic highest occupied band that

rises from Γ→ X → M → R, which sets a direct band gap. We
proceed by analyzing the character of this band, the effect of
relativity, and how both work in together in setting the valence
band maximum.

The Role of Relativity. If one is going to have Pb in a
structure, as we do in CsPbBr3, one anticipates a relativistic
effect on the orbitals of Pb, and perhaps also those of Cs. One

Figure 1. Three representations of the cubic ABX3 perovskite structure: 1, the lattice with A in purple, B as yellow octahedra, and X in burgundy; 2,
primitive/conventional unit cell of ABX3; and 3, local octahedral environment around B.

Figure 2. A view of the cubic structure of CsPbBr3. Color code: Pb,
gray; Br, brown; Cs, turquoise.

Figure 3. (Left) Band structure of CsPbBr3 computed at the ZORA-SCAN/TZ2P level of theory. The one-electron energy is referenced to the
vacuum level, and the Fermi level is indicated as a red line. (Right) The corresponding Brillouin zone of the simple cubic lattice.
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thing theory allows us to do is to probe the source of the
underlying physics by computational experiments that are
impossible to perform in reality. In the case at point this
involves turning off the workings of scalar relativistic effects,
herein approached by the zeroth-order regular approximation
to the Dirac equation (ZORA).
Non-relativistic and relativistic band structure calculations

are shown in Figure 4. What we see clearly in the left and right
sides of Figure 4 are two occupied bands behaving in mirror-

like fashionone going down Γ→ X → M → R and rising
back to Γ. The other, the highest occupied band, is doing
precisely the oppositeit goes up along Γ→ X → M → R and
then down to Γ. The mirroring of these bands is not an
accident, and while it occurs whether relativistic effects are
included or not, relativity plays a major role in decreasing the
bandwidth of both mirrored bands, thereby widening the band
gap from 0.3 to 2.1 eV.

Figure 4. Band structure of CsPbBr3, computed at SCAN/TZ2P (left) and ZORA-SCAN/TZ2P (right). The magenta arrows mark the mirrored
bands.

Figure 5. Computed band structures of the Pb and CsBr3 sublattices in CsPbBr3.
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The fact that this difference in band gap is related to the
effect of relativity on the Pb 6s orbitals, and to Pb−Br
interaction, we obtain that from calculations on the respective
Pb and CsBr3 sublattices. Their band structures are shown in
Figure 5.
All pictured bands in the Pb sublattice are reasonably flat

the atoms are too sparsely spaced to feel one another. The
lowest lying band in the Pb sublattice, and the flattest, belongs
to the 6s orbital. Relativistic effects bring it down by ca. 2.5 eV.
The three Pb p bands have some bandwidth, and they run as
we expect them to do in a simple cubic lattice.15 Their position
on the energy scale indicates that they will be mainly involved
in making up the conduction bands in CsPbBr3established
knowledge in the literature.
The CsBr3 sublattice is more challenging to unfold. The

easiest part involves the contribution by Cs, making up the flat
bands at −14 eV. Those are Cs 5p orbitals, sometimes viewed
as outer-core or subvalence levels16−18their energy is
effectively unperturbed by relativity. The flatness indicates an
absence of bonding between Cs and its surrounding scaffold,
and renders the band an energy calibration for all other bands.
The three bromides in the unit cell contribute three 4s orbitals,
which are below the energy window shown. Above them,
roughly in the region −8 to −9 eV, are bands arising from nine
Br 4p orbitals, in a relatively narrow energy window.
The Mirror. We move back to the band structure of

CsPbBr3. It is clear from Figures 3 and 5 that Pb and Br are

interacting. Of their 10 levels in total (1 Pb 6s and nine Br 4p),
eight remain in a 2-eV-wide band, while two others form the
striking mirror patternone band going up, the other going
down. What is the makeup of the mirrored bands?
Figure 6 displays the Pb 6s contribution to all bands, in red,

as well as the Br 4p (together), in blue. These are obtained
directly from the STO basis set. We see that the Pb 6s orbital
contributes significantly to the mirrored bands, mixing strongly
(and exclusively) into both bands. We also see that the Pb 6s
contributes to both bands for the non-relativistic calculation,
but relativity makes it contribute more to the band that runs
down. Both bands also feature significant Br p character. The
Br contributions are the inverse of the Pb onesif relativistic
effects are considered, one sees Br p character contributing
more to the band that runs up.
Clearly, some combination of Br 4p bands interacts strongly

with the Pb 6s, giving rise to the mirror. Figure 6, and several
previous reports,19−21 suggest that we look for the reason in Pb
6s−Br 4p σ combinations. We proceed by a step-by-step
construction of the crystal orbitals that belong to the mirrored
bands.
In Figure 1, structure 2, we had displayed a cell for cubic

perovskites which is both primitive and conventional (it
contains the point group symmetry of the overall lattice). For
our upcoming construction, we require a different primitive
cell, one that shares no atoms with any neighboring cellthis
allows us to define an orbital basis for a single cell, from which

Figure 6. Pb 6s (red, top) and Br 4p (blue, bottom) contributions to the band structure of CsPbBr3.
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we can derive the crystal orbitals. Such a primitive cell is shown
in Figure 7, where we demonstrate how it builds the cubic
perovskite lattice by translation through vectors a1, a2, and a3.
We have omitted the nonbonding Cs ions.
The primitive cell contains a C3v-symmetric PbBr3 unit, for

which we can construct a symmetry-adapted linear combina-
tion of Br p orbitals, suited for σ overlap with the Pb 6s. This is
a fragment molecular orbital (FMO) of a1 symmetry within the
point group of the basis. The interaction of this a1 Br 4p
combination with the Pb 6s gives rise to one σ and one σ*
molecular orbital (MO), shown in Figure 8. The unit is slightly

angled here (with respect to Figure 7), so as to provide us a
better visual perspective of what these orbitals look like. Also,
please note that we have assigned a schematically larger
contribution in the σ combination to the Pb 6s, which lies
lower in energy than Br 4p (Figure 5), and vice versa for σ*.22

We will return to this aspect, a consequence of the nature of
orbital interactions.
The σ and σ* MO combinations of Figure 8 are bases from

which we can construct crystal orbitals. We build these by
translation of the MOs along the real-space vectors
analogous to what we did in Figure 7while applying phase
factors eik·r for the different high-symmetry points of the BZ. In
that BZ (Figure 3), the high-symmetry points with their

reduced coordinates in reciprocal space are Γ (0,0,0), X
(1/2,0,0), M (1/2,

1/2,0), and R (1/2,
1/2,

1/2). At Γ, b1 = b2 = b3 =
0; the orbitals propagate in 3D with no phase factor in any
direction. At X, M, and R, the reciprocal-space vectors take
either the value of 0 or 1/2.23 The nonzero value for b1, b2, and
b3 corresponds to phase inversion of the MOs between
adjacent unit cells in the direction of that reciprocal lattice
vector. As b1 points in the same direction as a1, b2 in the same
direction as a2, etc., we have phase inversion in the crystal
orbitals along a1 for X, along a1 and a2 for M, and a1, a2, and a3
for R. We have drawn the first step in the construction of these
crystal orbitals, with the σ combination as the orbital basis, in
Figure 9.
If we zoom in on Figure 9, we may focus on one complete

PbBr6 octahedron that contains the basis, a chemically intuitive
beacon. In Figure 10 we truncate the crystal orbitals of Figure
9 to this octahedron, in order to show the development in
bonding along Γ-X-M-R for both the σ and σ* bands. We can
now move to the analysis of their band energies based on a
calculus of bonding and antibonding interactions. At Γ, there
are three bonding and three antibonding interactions for both
the σ and σ* bands. As we move to X, phase inversion replaces
antibonding by bonding along one direction for σ; we are
removing nodal planes, and introducing stabilization. The
opposite happens for σ*, where antibonding is starting to win
out. Two identical phase-inversion operations farther, at R, the
σ and σ* bands have become as bonding and antibonding as
they can be, and the level splitting is at its maximum. We have
our mirror.
Figure 11 displays a density-of-states (DOS) plot, computed

at the relativistic level. It is augmented by Crystal Orbital
Overlap Populations (COOPs), which weight the DOS by the
states’ contribution to bonding or antibonding, as measured by
a Mulliken overlap population analysis.24 The DOS features a
spike from the flat Cs bands below the Fermi level and several
broader regions. We can relate the mirror bands to the blue
bonding and antibonding sPb−pBr regions in the COOP (these

Figure 7. Cubic lattice build-up by a primitive PbBr3 unit by translation through a1, a2, and a3.

Figure 8. σ and σ* Pb 6s/Br 4p combinations of a1 symmetry (within
the C3v point group) for the PbBr3 unit.

Figure 9. Constructed crystal orbitals of the σ band at Γ, X, M, and R. The orbital basis is drawn in red.
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regions shift predictably in a non-relativistic calculation; see
Supporting Information (SI), Figure S1).
The green states between −7.5 and −10 eV are not involved

in the mirror, yet they are hardly innocent of Pb−Br bonding.
The COOP tells us that these involve pPb−pBr interaction. This
important observationwhich will direct us toward an
understanding of the conduction band laterwas also made
in a report by Huang and Lambrecht, from their analysis of
DOS contributions.19 As we will see, these states form a
second mirror.
Let us relate relativity to band gap and bonding in CsPbBr3.

We move back to Figure 4. Our calculations on the Pb
sublattice there revealed that relativistic effects bring down the
Pb 6s orbital by some 2.5 eV, to ca. −13.5 eV. This pushes it
away from the Br 4p combinations, which lie all between −8
and −9 eV. As relativistic effects are turned on, the resonance
in energy of the interacting orbitals is less pronounced, and the
two-fold consequencesrepresented in the simple MO
scheme of Figure 12follow: (i) we obtain less stabilization
by bonding, and less destabilization by antibonding, and (ii)
we can anticipate the lower-lying orbital to contribute
significantly more to the bonding level, and the higher-lying
orbital significantly more to the antibonding level.25

Indeed, the bandwidths of the two mirrored bands are
reduced by relativity, and the Pb 6s character moves to the
lower band (Figure 6, red). This is how relativity and bonding

work together to decrease the mirror’s width and increase the
band gap.
The analysis we present here could have been done in a

more formal way, using the apparatus of group theory in the
solid state. An excellent example of how this is done may be
found in the Wolfram and Ellialtıoğlu analysis of the crystal
orbitals of the oxide perovskites.26,27

We have chosen to focus on the details of orbital
interactions and how they change within the BZ, because we
feel a deeper physical understanding of the bonding ensues.

The Mirror Is Robust and Predictive.We briefly move to
the popular hybrid analogue CH3NH3PbBr3, where A ion Cs+

Figure 10. σ and σ* crystal orbitals along Γ-X-M-R, represented by a PbBr6 octahedral unit. The orbital bases for the σ and σ* bands are colored
red and blue, respectively.

Figure 11. Density-of-states (left) and Crystal Orbital Overlap Population plots, cumulative (center) and decomposed into s-s, s-p, p-s, and p-p
bonding contributions between Pb and Br (right).

Figure 12. A schematic view of interaction between atomic orbitals of
different energies.
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is replaced by methylammonium. This perovskite is exper-
imentally known to be “pseudocubic” at room temperature: a
cube-shaped unit cell that bears a distorted lattice with tilted
octahedra.28,29 The top of Figure 13 displays the structure
from three perspectives. Cage-filling CH3NH3

+ brings some
Pb−Br bond length alternation and a departure from the 90°
Br−Pb−Br angles. The bottom part of Figure 13 depicts the
computed band structure (left), and the Pb 6s contribution
(right). Note how the flat bands for Cs+ have made place for
several new flat bands with a constant spacing between. These
levels belong to the methylammonium ion, which like Cs+ does
not engage in strong chemical bonding; weaker hydrogen-
bonding interactions between H(N) atoms and the halide have

been discussed at some length in the literature.30,31,32 More
importantly, the mirror persists, and one may notice how a
barely visible decrease in bandwidth for the σ* increases the
band gap by 0.1 eV with respect to CsPbBr3an effect of the
octahedron’s distortion giving rise to a slightly diminished Pb−
Br σ-interaction.

Varying the B Cation. The mirror does more. Its
composition suggests thatgiven a fixed set of halide ligands,
in our case Brit is the valence metal B ion s orbital that will
set the energy value for the valence band maximum (VBM) at
R. The closer the energy of this orbital relative to that of Br 4p,
the wider the mirror and the more the σ* component of the
mirror is pushed up. As a consequence, the VBM will lie higher

Figure 13. Structure (top) and band structure (bottom, left) of CH3NH3PbBr3 with the Pb 6s contribution (bottom, right).

Figure 14. Schematic representation of the Br 4p and metal valence s energy levels with the “calibration” Cs 6p band (left). Correlation between B
metal valence s energy, VBM (middle), and band gap (right).
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and narrow the band gap. To demonstrate the validity of this
picture, we have optimized CsSnBr3 and CsGeBr3 within cubic
symmetry (bond lengths: Sn−Br, 2.95 Å, and Ge−Br, 2.80 Å).
The former is a well-investigated perovskite for photovoltaic
application as one seeks out lead-free materials. It is
experimentally known to be ideally cubic Pm3̅m at room
temperature,33−35 even though a “hidden” distortion at higher
temperatures has been recently reported.36 CsGeBr3 undergoes
a distortion toward rhombohedral R3m, although the cubic
phase can be stabilized by pressure.37 In Figure 14, the scheme
on the left depicts the energies of the B metal valence s and Br
4p levels, as obtained from sublattice calculations (Figure S2).
To the right of it, we show the correlation between the metal s
orbital energy and the VBM, confirming our reasoning: the
VBM-B valence energy correlation is almost perfectly linear.
The computed band structures for Pm3̅m CsSnBr3 and
CsGeBr3shown in Figure 15 with the Pb 6s contribution
graphed on the rightshow the mirror at work, extending the
concept we had initially derived by exploring the relativistic
effects in CsPbBr3.
The correlation between band gap and metal s orbital is not

as linear. The gaps of CsPbBr3 and CsSnBr3 arerelatively
speakingwhere we would expect them; the higher energy of
the VBM (with respect to CsPbBr3) narrows the band gap for
CsSnBr3, but the one for (virtual) Pm3̅m CsGeBr3 is smaller

than we might predict (Figure 14, right). An inspection of the
bands reveals that the conduction band has come to spoil the
simple picture, moving down almost 1 eV more than it does for
the other two perovskites. But the inescapable distortion
toward R3m widens the band gap significantly, to 1.62 eV. This
typical semiconductor’s trait of producing an energy-lowering
distortion when the band gap is “too small” 38 pushes, in our
case, the value of the gap for CsGeBr3 right between those of
CsSnBr3 and CsPbBr3. Even if we would take the distortion
toward Pnma into account for CsPbBr3 (which slightly widens
the computed gap to 2.3 eV, Figure S4), the trend would be
there. We intend to explore the mirror’s potential in
understanding and predicting perovskite distortions separately
in the future. For now, we take a look at the way it holds up in
R3m CsGeBr3.
In R3m CsGeBr3, the GeBr6 octahedron sees three Ge−Br

bonds stretched to 3.2 Å, and three shortened to about 2.6 Å.
We illustrate this in a local view of the octahedral octahedron
(Figure 16, top). This deformation from ideally cubic has been
described as a Jahn−Teller instability by Seo et al.39 The BZ
for R3m is different from the cubic one we have employed
before, but it is possible to define a path in the R3m BZ that is
analogous to the one we had in Pm3̅m. It goes from Γ (0,0,0)
to Z (1/2,

1/2,
1/2) through L (1/2,0,0) and F (1/2,

1/2,0). The
computed band structure along this path (Figure 16, bottom)

Figure 15. Computed band structures of Pm3̅m CsSnBr3 and CsGeBr3 perovskites; to the right the Pb 6s contribution.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b08038
J. Am. Chem. Soc. 2018, 140, 12996−13010

13003

http://pubs.acs.org/doi/suppl/10.1021/jacs.8b08038/suppl_file/ja8b08038_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b08038/suppl_file/ja8b08038_si_001.pdf
http://dx.doi.org/10.1021/jacs.8b08038


shows that the mirror is virtually unaffected by the Pm3̅m to
R3m distortion, setting the VBM at a value similar to that of
cubic CsPbBr3, just above −6 eV. It is the conduction band
minimum (CBM) that has moved up in energy to widen the
gap; we will provide an understanding of the nature of these
bands in an upcoming section.
A Trend for Halides. We have seen how the variation in A

and B cations affects (or does not affect) the basic bonding
pattern in the structure. A second trend can be anticipated for
the halides, tied to their valence p orbital energies. The latter
run down in energy on moving up group 17, as graphically
depicted in Figure 17 (left). We have optimized CsPbF3,

CsPbCl3, and CsPbI3 within cubic symmetry (bond lengths:
Pb−F, 2.33 Å; Pb−Cl, 2.86 Å; Pb−I, 3.19 Å). At experimental
room-temperature conditions, CsPbF3 exists as cubic Pm3̅m,
but distorts to hexagonal R3c at low temperatures (186 K and
down).40,41 CsPbCl3 and CsPbI3 experience the familiar
Pm3̅m-to-Pnma transition at room temperature,42,43 which
we had earlier mentioned to be there for CsPbBr3 as well. A
simple explanation of the extent of this distortion, relating
band gap to geometry, is currently not at hand: the distortion
is heftier for CsPbI3 than for the bromide and chloride
analogues, even though recent experimental progress includes
the synthesis of cubic CsPbI3 at lower temperatures than

Figure 16. Geometry of the distorted GeBr6 octahedron in R3m GeGeBr3 and the computed band structure with Pb 6s contribution.

Figure 17. Schematic representation of the halide p and Pb 6s energy levels (left), and the correlation between halide p energy and band gap
(right).
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previously attainable.44 In describing the trend for the halides,
we will stay in ideal cubic symmetry.
Whereas we could predict the trend for the VBM along the

series Pb, Sn, and Ge purely on the basis of atomic orbital
energies, the picture for the halides is more complex, for two
antagonistic factors can be expected to be at work. The σ*
band, that sets the VBM, is predominantly made up by the
halide p level. We might then anticipate the VBM to lie higher
in energy when we have a higher-lying halide pthis line of
thinking would predict the VBM of CsPbI3 to lie highest, and
its gap to be smallest. But on the other hand, we can anticipate
a decreased strength of interaction with low-lying Pb 6s when
we push up the energy of the halide p orbitals (as we had in
exploring the relativistic effects on CsPbBr3). This would lead
to a decrease in splitting for the PbBr3 σ/σ* pair, and a lower-
lying VBM. Molecular calculations on Oh PbX6 (X = F, Cl, Br,
I), exploring the fragment molecular orbital overlap between
the a1g linear combination of X p orbitals and Pb 6s, indicate
that these overlaps at our optimized geometries are virtually
independent of the halide (0.30−0.31 for all cases, Table S1).
We may thus expect the bandwidth to be controlled entirely by
the difference in energy levels between the halide p and Pb 6s.
And if the bandwidth is the dominant factor in setting the band
gap, we would expect the latter to be smallest for CsPbF3.
The right-hand side of Figure 17 depicts the relationship

between the band gap and the halide p energies, which were
obtained from sublattice calculations (Figure S3). It shows that
the absolute energy value of the halide p orbitals, rather than
the interaction with Pb 6s, is dominant. The trend is linear
along I−Br−Cl, but the gap for CsPbF3 is smaller than an
extrapolation of this linear relationship would lead one to
expect. The computed band structures (Figure S5) are in
convincing agreement with what we had argued before, and
summarized in Figure 12: the Pb 6s mixes increasingly into the
σ* component of the mirror interaction as the halide p drops
toward the Pb 6s level. The latter is only marginally involved in
the σ* component of the flat mirror for CsPbI3, becomes more
of a factor in the same band for CsPbCl3, and is almost equally
involved in the σ and σ* components for CsPbF3, a sign of
highly covalent bonding. The details of the Pb−halogen
interaction (Figure S5) also show how the close energy
resonance of F 2p and Pb 6s leads to a steep increase in width
for the mirror as compared to the case of CsPbCl3, pushing up
the σ* band and VBM significantly.
The Conduction Band: A Second Mirror. For all band

structures we have seen until now, the lowest-lying state above
the Fermi level is at R. And for all band structures, we can find
three conduction bands that create a signature pattern along Γ-
X-M-R: two lozenges that resemble the Pb 6p pattern of Figure
5 in energy and shape, but which dip down at R. This dip is
important, as it creates a direct band gap. The lozenges form a
mirror of their own, with a slightly distorted reflection in the
halide p band region below the Fermi level. Figure 18 gives a
schematic representation of what can be seen explicitly in
Figures 4, 13, 15, and 16 (or for that matter in many band
structures in the literature).
In trying to understand the crystal orbitals responsible for

this second mirror, we start from two observations: (i) the
reflected lozenges are made up by three bands at each side of
the reflection, that start out from the same energy at Γ and
return to the same energy at R; (ii) the components of the
mirror lie in regimes of pPb−phalide interaction, bonding below
the Fermi level and antibonding above it (Figure 11, p-p

COOP). It is clear that the crystal orbitals making up these
lozenges consist of the three B metal valence p orbitals in
bonding and antibonding combinations with three combina-
tions of halide p orbitals. The only bases that would lead to a
triple degeneracy occurring only at Γ and R are shown in
Figure 19. Note how there is a bonding combination in which

the three combinations are identical, just oriented differently
along the three crystallographic directions (this also applies for
the three antibonding combinations).
Designating the B metal as “B” and the halide as “X”, note

also that each basis contains two distinct kinds of B−X
bonding: σ and π. The type of interaction is indicated along
the bonds. This aspect will be crucial to our understandingσ-
type interactions tend to be substantially larger than π-type
interactions, a result of greater overlap. In analogy to our first
mirror, where we just had a σ and σ* basis, we will refer to
three bases as σ π π and to the other three as σ* π* π*.45 The
halide p lies in all cases considerably lower in energy than the
Pb 6p, so the former contributes more to occupied σ π π and
the latter more to the higher-lying and vacant σ* π* π*.
From the bases, we construct the crystal orbitals for the

different high-symmetry points of the Brillouin zone. Let us
consider just one orbital type for now, px, and analyze in detail
how the bonding changes along Γ-X-M-R for the σ π π and
σ* π* π* bands which it makes up. In Figure 20, we follow the
representation we had used beforethat of a PbX6
octahedron, where we color the bases red for σ π π and blue
for σ* π* π*. At Γ, translation of the σ π π basis (without
phase factor) along a1 creates an additional Pb−halide σ

Figure 18. A schematic of the second mirror-like pattern.

Figure 19. Six orbital bases: three σ π π and σ* π* π* Pb 6p/halide p
combinations.
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interaction along that axis. Analogously, translations along the
a2 and a3 axes give rise to two additional π interactions. Note
how the σ π π octahedron at Γ in Figure 21 thus comprises two

σ- and four π-type interactions, a maximally bonding setting.
For the σ* π* π* band, the three translations continue the
bonding relationships of that basisthe octahedron in Figure
20 contains two σ*- and four π*-type interactions. The
σ* π* π* band is an all-antibonding reflection of σ π π at Γ,
and the splitting between the bands is at its maximum at that
point. The second mirror begins its reflection.
Let us describe what happens to the higher-lying

(conduction band) σ* π* π* combination of the px orbitals
as we move along Γ-X-M-R. The phase inversion at X changes
a σ* interaction to a σa significant stabilizationand the
band in question moves quite a bit down. On moving to M, a π
stabilization replaces a π* one; the band moves down again,
but (much) less so than along Γ-X. This second, smaller
stabilization occurs a second time along M-R, and at R it
reaches the CBM. The σ* π* π* band of the px orbital runs as
indicated in Figure 21.
If one repeats this process for the py and pz σ* π* π*

combinationsthe crystal orbitals of which are shown in
Figure 22one obtains similar behavior. The larger changes
(occasioned by σ* interactions changing to σ) occur in
predictable sections of the BZ. These are the segments in our
path that bring phase inversion along the σ-bonding
component in the bases: along a2 for py and along a3 for pz.
The pattern of the three σ* π* π* bands in Figure 21 is

mirrored by the runs of the three σ π π bands (σ/σ* and π/π*

exchange in the above argument). But most significantly, we
understand the CBM at R: while relatively weak, it is the π-
component in the σ* π* π* bands that sets it and, crucially,
establishes a direct band gap. To put it in another way, if there
were no π interaction, the energies of the lowest unfilled crystal
orbitalsthe bottom of the conduction bandwould be
identical at X, M, and R.
Note how the bonding of the three σ π π and three σ* π* π*

bands came forth in the p-p contribution of the COOP in
Figure 11 (for CsPbBr3). At its lowest point in energy, the
(green) p-p curve below the Fermi has its bonding maximum,
and becomes nonbonding toward the highest point in energy.
Above the Fermi level, the p-p curve goes from nonbonding to
progressively antibonding as we move up in energy.
In our treatment of the first mirror, we had analyzed how the

VBM depends on the valence orbital energies of the interacting
metal B s and halide p. In the same way, we look how the
energy of the metal B p orbital correlates with the CBM of the
ideally cubic structures in CsPbBr3, CsSnBr3, and CsGeBr3.
Figure 23, in which the metal B p orbital energies are obtained
from sublattice calculations, shows that this correlation is there.
This fits what we would predict, as the CBM is nonbonding
and of dominant metal B valence p character. Yet, we consider
a tuning of the CBM to be challenging: the variation along the
valence p energies for main-group metals is relatively small, and
significant spin−orbit effects can be expected for the lower
conduction bands when the heavier B metals are involved
(Figure S6).46−48

A reviewer has pointed out that Figure 23 seems to imply
that Ge2+ is easier to reduce to Ge0 than Pb2+ to Pb0. This is
not correct. Inclusion of spin−orbit coupling (which we will
discuss in further work) brings this trend into better agreement
with experiment.

Things Undone. What we have not said a word about are
the atomic size considerations (ionic radii) that have
dominated much of the literature discussion, allowing people
to make reasonable judgements of the potential existence of
perovskite structureswe are referring to the Tolerance Factor
of Goldschmidt,49 its applications,50,51 and recent extensions52

and alternatives.53

In a way, size considerations are contained in the quantum
mechanical calculations that we have done: the core of F− is
smaller than that of I−, ditto for Sn2+ relative to Pb2+, and the

Figure 20. px combinations of the σ π π and σ* π* π* crystal orbitals along Γ-X-M-R, represented by the PbX6 octahedral unit. The bases are
colored red and blue.

Figure 21. Atomic orbital nature of the σ* π* π* bands that set the
lowest point of the conduction band. Bands degenerate in energy are
represented by thicker lines.
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equilibrium length of a chemical bond is determined by a
balance between attractive and repulsive forces. B and X ions
with larger cores will give rise to BX3 networks with larger
lattice constantsin other words, these ions set the size of the
cubic cage in which the A cation resides. The A cation can be
too large to fill the cage, preventing the octahedral network
from existing, or it can be too small, inducing a (sometimes

dynamic) distortion to maximize its electrostatic interaction
with the negatively charged BX3 scaffold.
We have skimped on most of the discussion of geometrical

perturbations, in particular on Jahn−Teller distortions and
other symmetry-lowering deformations. Certainly, more can be
said about local octahedral coordination and lattice distortions,
in particular when it comes to connecting these to the chemical
bonding model that we have here established. If we have not
discussed the ion-size-derived approaches, it is not because
they lack utility. To the contrary, they have provided much
structural insight. We concentrate on orbitals, symmetry, and
bonding because they ultimately underlie geometry.

■ CONCLUSION
This paper provides a bonding analysis for metal halide
perovskites in which we relate the magnitude and nature of the
band gap to chemical bonding. This is done over an energy
range spanning more than 15 eV around the Fermi level.
The changes in the electronic band structure induced by

varying the elements that make up ABX3 are considerable. Yet,
they can be well understood in the qualitative way where
understanding resides. Two mirrors emerge in the band
structure as robust signposts of chemical bonding and
antibonding. Atomic orbitals and their interactions control
the energy ranges of these mirrors in setting the band gap; how
they do so is within the grasp of a chemist’s understanding.
If understanding is really there, it should bring predictive

and analytical power. Always in the qualitative sense, for hard
numbers require high-level calculations, and grasping the
essence of computational results typically becomes more

Figure 22. py (top) and pz (bottom) combinations of the σ π π and σ* π* π* crystal orbitals along Γ-X-M-R.

Figure 23. Correlation between B metal valence p energy and the
CBM.
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elusive as the calculations become more involved and accurate.
The road has been a long one, but we believe it has provided
empowering understanding. We would like to take an unusual
step by leaving the reader with two problems that will test his
or her understanding:

1 If we introduce a group 12 dication, such as Cd2+ or
Hg2+, what is likely to happen to the band gap, and what
role will scalar relativistic effects play?

2 If one goes from CsPbBr3 to CaTiO3, the archetypal and
“first” perovskite, how may we expect the general aspects
of the bonding and band structure in cubic symmetry to
differ from what we have labored to understand for the
halides?

We believe we have put into readers’ minds the way to
answer these (and other) qualitative questions on the bonding
in different classes of perovskites.

■ COMPUTATIONAL METHODS
The crystal structure of CH3NH3PbBr3 was taken from ref 28. For all
other structures, Quantum Espresso 6.0 was employed for the
geometry optimization, using density functional theory.54,55 We used
the Hartwigsen−Goedecker−Hutter scalar-relativistic pseudo-
potentials, with a plane-wave cutoff energy of 200 Ry. Band structure,
DOS, and COOP calculations on the optimized structures were
performed with the ADF BAND package, at the ZORA-SCAN/TZ2P
level of theory.56 In these periodic calculations, we have expanded all
wave functions through a Slater-type orbital (STO) basis set. This
brings the following advantages with respect to the typical plane-wave
calculation.

(i) Atomic orbital contributions to the wave function are obtained
directly from the basis set, rather than from projections. The
STO functions are as close as we can get to “real” atomic
orbitals.

(ii) All-electron basis sets are used, avoiding the use of pseudo-
potentials and effective core potentials. Relativistic effects are
taken into account by the scalar zeroth-order relativistic
approximation (ZORA). By using the same basis set with and
without ZORA, we can directly isolate the relativistic
contribution to the band structure, and understand these in
terms of (Slater-type) atomic orbitals. This will be important in
the analysis of heavy-atom perovskites, such as those
containing Pb.

The SCAN functional gives reasonable accuracy at limited
computational cost.57 More accurate band gaps can be computed
by using hybrid functionals with a screened Coulomb potential, such
as HSE06.58 The qualitative understanding that we have provided in
this work does not depend on the functionalTable S2 of the SI
demonstrates this.
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