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ABSTRACT: We describe a general, symmetry-conditioned way of enumerating
isomers of saturated singly substituted one-dimensional nanothreads of the
(CH);E and (CH)CR type, where E is a heteroatom and R is a substituent. Four
nanothreads — so-called tube (3,0), polytwistane, the zipper polymer, and
polymer I, are treated in detail. The methodology, combining symmetry
arguments and computer-based enumeration, is generally applicable to isomerism

problems in polymers.

1. INTRODUCTION

In 2014, for the first time in the over 100 years that benzene
has been compressed,' material well-ordered in two dimensions
was recovered, the benzene nanothreads.” These solids contain
hexagonal arrays of largely saturated one-dimensional polymers
of predominant composition CH, each polymer ~6.5 A in
diameter (van der Waals radius included). They are thought,
based on the evidence so far, to lack thread-to-thread registry
along the chain axis. Narrow Raman spectral features are
observed for nanothreads, however, suggesting that individual
threads have a significant degree of order along their length.”’
Moreover, order over several nanometers is observed by
transmission electron microscopy.4

Isomerism makes chemistry useful and interesting ... and also
makes life complicated for chemists. Several nanothread
structures were suggested prior to the experimental syn-
thesis.”™” Of course, being suggested by theoreticians, these
nanothreads were quite regular. The linkage isomerism
possibilities in one-dimensional fully saturated benzene
polymerization grow very rapidly with system size. Limiting
oneself to a certain topological repeat unit (the distinction
between crystallographic and topological repeats will be defined
below), Xu, Lammert, and Crespi enumerated 50 isomeric
saturated nanothreads.” Chen et al. derived a roadmap for
polymerization, defining the simpler isomeric possibilities for
polymers having one or two double bonds remaining on each
(CH) ring, ie, on the way from a stack of benzenes to a
completely saturated nanothread.”

Attempts to derivatize the nanothreads are underway, and
the polymerization of heterosubstituted aromatics such as
pyridine has also led to some ordered polymers, likely also
nanothreads.'” We have therefore undertaken a systematic
study of the isomeric possibilities, either of (CH)E (e.g,
pyridine) or of (CH);(CR), where R is a substituent. The latter
case has also been theoretically studied, for a selection of
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isomers and substituents, in a recent paper by J. Silveira and A.
Muniz."'

Here we present a systematic exploration of the isomeric
possibilities of four substituted nanothreads, in the process
laying out a symmetry-conditioned permutational analysis that
can be applied to any of the other threads, and to potential
greater degrees of substitution and, more generally, to

isomerism problems in other polymers.

2. RESULTS

2.1. The Nanothreads Studied and Our Approach.
Figure 1 shows the four nanothreads that we will consider.

Figure 1. Structures of four benzene nanothreads.
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Each thread is made up solely of sp> C—H units. The most
stable of these (not by much energy) is polytwistane, originally
suggested by D. Trauner,’ a structure with remarkable
symmetries. It forms a helix of irrational pitch, which, with
little distortion, can be “rationalized” to a unit cell containing
12 benzenes. Perpendicular to the helix axis run two distinct 2-
fold axes — such axes will play a role in our analysis.

Polytwistane also allows us to distinguish between a
topological and a crystallographic unit cell. If we keep the
pitch irrational, the crystallographic (one-dimensional) unit cell
is infinite; but the topological unit cell is one (CH),, for the
connection pattern or linkage to the next one along the chain of
each (CH); ring is the same. Underlying this single-benzene
chemical repeat unit is a smaller two-carbon-atom cell whose
screw translations reconstitute the entire thread. In the so-
called polymer I° the topological and crystallographic unit cells
both contain two benzene units (ZtOPO = Zoys = 2).

Since nanothreads based on pyridine constitute so far the
only substituted system that is experimentally accessible,"’ we
focus on polymers of this molecule. Substitution of one CH per
ring by N (or in the case of functionalization by CR) naturally
introduces further possibilities for isomerism. We now
introduce a symmetry-based methodology for dealing with
the complex isomerism facing us.

2.2. Easy lIsomerism: The Zipper Polymer. This
nanothread is named after the geometrically seemingly facile
process of zipping up a polymer formed by Diels—Alder
reactions of a stack of benzenes.” Its structure is shown in
Figure 2; see the SI for the structural relations of the four

Figure 2. Structure of the zipper polymer.

nanothreads in Figure 1 to a stack of benzene molecules. The
zipper polymer has the same number (Z) of six-membered
rings in the topological unit cell, as it does in the primitive
crystallographic repeat unit, ie., Zy,, = Zoys = 2. Note the
mirror planes and 2-fold axes of the polymer, which we will use.
There is also a glide plane, which is not marked. The zipper
polymer tends to curve if no periodic boundary condition is
imposed. We study only the isomerism in an uncurved polymer.

To begin the enumeration, we number the ring positions
clockwise, looking down along the thread axis (Figure 3). The
second ring is numbered with blue numbers bearing primes.
One can see three strands in the zipper polymer, —6—1—1"—
6'—, —=3—2—-3'-2"—, and —4—-5-4'-5"—.

With the numbering notation, one can assign an identifier to
each thread, based on substitution positions. For example, if
one isomer of a pyridine thread has a nitrogen at position 1 of
the first ring and at position 2’ of the second ring, and if the
third ring repeats the first and so on, its identifier is 12’. One
can, of course, use a redundant sequence 12'—12'—12" --- as the
identifier for this structure; but given the crystallographic unit
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Figure 3. Ring position numbering and two sets of correspondences
associated with two symmetry operations in the zipper polymer.

cell Z, = 2 for this thread, 12’ is the minimal unique
identifier. Nevertheless, by writing out the redundant sequence,
one can clearly see that 12" = 12'—12'-12" = 1-2'1-2'1-2" =
2'1. The only difference between 12" and 2’1 is which ring, the
unprimed or the primed, is chosen as the first ring. However, at
this point we cannot say 2’1 = 21’, because we have not
established the correspondences of the unprimed and primed
numbers.

Of course, nitrogen-substituted threads can have Z,, > 2, up
to infinity. A simple example is 12'13’, in which the nitrogen
position in the fourth ring is not the same as in the second ring
(if they were the same, the thread would be 12’12 = 12'). We
limit ourselves to pyridine threads with Z, = 2; the identifiers
for these structures have only two digits.

Following a combinatorial scheme for two independent
numbers, the first one ranging from 1 to 6 and the second from
1’ to 6/, one can easily list all structures with Z ., <2 (6 X 6 =
36 in total). Since there are symmetry elements in the parent
thread structure, one can be sure that there are duplicates
among these 36 structures. Two symmetry operations of the
one-dimensional polymer are, as noted, mirror planes and 2-
fold axes in addition to the translation. These symmetry
operations interrelate atoms where substitution of CH by N or
CR might take place, and we use them to eliminate duplicates.
We have already used the translational symmetry to derive 12’
= 2'1. Next, we derive the correspondences induced by the
mirror planes and 2-fold axes.

As shown in Figure 3, the mirror plane containing 3'—4’
relates 1to 1,2 to 2’, S to 5, and 6 to 6’ but has no effect on 3,
4,3’, and 4'. The other mirror plane containing 3—4 yields the
same set of correspondences. Similarly, the C, axis passing
through the center of bond 1'—6' transforms 1’ to 6, 2" to 5/, 3
to 4’, and so on. The two-headed arrow in Figure 3 indicates
these inter-relationships and generates two sets of correspond-
ences or mapping rules, one associated with the mirror plane
and the other with the 2-fold axis.

An example will make the process clear. Consider the
question whether 21’ is the same or different from 12'. Yes, one
can physically look at a model of the substituted polymer, but
one can also apply the correspondences. Applying the mapping
rules associated with the mirror plane, one easily finds 12" =
21", One can also apply the set of correspondences associated
with a C, axis to 12/, to obtain 12’ = 5’6. Note, and this is
important, that since both mirror reflection and 2-fold rotation
reverse the thread direction, the sequence of the numbers in the
identifier should also be reversed after the identifier is subjected
to the mapping rules. Therefore, applying the mirror to 12/,
one obtains 21’, not 1’2 as would be if the sequence were not
reversed (see Figure 4). Manipulating a model helps here.

However, for this particular structure with Z . = 2, 1'2 can be
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Figure 4. Mirror reflection transforms isomer 12" to 21’ of the
nitrogen-substituted zipper polymer.

transformed to 21’ by translation, so that this is not a good
example to illustrate the reversal of sequence upon mirror
operation or C, rotation. A better example will be provided
below for polytwistane.

Next consider the case of 26" (Figure 5). Using the C, axis
mapping rules and remembering the switch in the direction of
the polymer, this is identical to 1’5. Applying the mirror plane
mapping rules, we reach 5'1. Then translation then takes 5’1 to
15",

Having established the two sets of correspondences, we apply
them to the 36 combinatorial possibilities for Z,,, = 2, so as to
eliminate duplicates. A general strategy of transforming the
identifiers is to make the first digit unprimed and as small as
possible. Figure 6 lists the 36 identifiers, with the 17 distinct
ones in red, and those can be transformed to the distinct ones
in black. Among the distinct isomers, those with neighboring N
atoms, i.e, N—N bonds, are indicated by * in Figure 6. The
reason for the identification is that in our forthcoming
consideration of the energetics of those polymers such
structures (with neighboring N atoms) emerge as being of
high energy.

Some transformations of the identifiers in Figure 4 utilize
only one set of correspondences. For instance, 21" = 12’ makes
use of just the mirror plane and the C, rotation, respectively,
while 65" = 2’1 arises from the application of the mapping rules
associated with the C, axis. Many other transformations involve
both sets of correspondences, as illustrated in Figure S for 26’ =
1'5=5'1=1§".

Figure 6. Isomer list for Z . = 2 pyridine threads of the zipper
polymer with explicit illustration of the process of using correspond-
ences to identify identical isomers. The starred isomers contain
adjacent N atoms.

One aspect of our process might cause confusion; some
transformations yield two unprimed or two primed numbers,
such as the first equation in 35’ = 2'4’ = 4'2 = 24’ (Figure 7).
In this case, 2’4’ means that the second ring has two nitrogens
at positions 2" and 4’ and no nitrogens in the first ring. How is
that possible?

Figure 7. C, rotation transforms 35’ to 2'4’. The latter has the two
nitrogens in the same ring.

That two nitrogens appear in the same ring is possible
because there is an inherent ambiguity, a choice, in subdividing
a completed thread into successive six-membered rings. Take

Figure S. C, rotation plus mirror reflection transforms 26’ to 1’5 and 5'I.
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the 35" polymer as an example (Figure 7). One way we have
used to choose rings is such that the orange unprimed and the
blue primed numbers indicate different rings. In the other way,
the rings contain mixed unprimed and primed numbers, e.g,
1'2'345'6’ as indicated by the oval dash in the left structure of
Figure 7. Let us call the two ways Choice-1 and Choice-2. Of
course, a different choice of rings results in different numbering.
However, upon a mirror reflection or C, rotation that reverses
the thread direction, the Choice-2 rings of the original thread
become the Choice-1 rings of the new thread. It is obvious in
Figure 7 that the nitrogens that belong to different rings in the
original thread are now in the same ring of the transformed
thread.

We note that additional symmetry operations could be used
to introduce further correspondences, but we have found them
redundant. Probably the minimal set of symmetries needed for
the purpose, given a linear translational (or frieze) group, is
derivable; this remains a possible topic for future work.

Again, it is obvious that the isomer set we have derived is the
simplest one, for Z,, after substitution maintained at 2. As we
noted, if one allows the second, third, etc. polymer unit to be
substituted in a different way from the first one, then the
number of isomeric possibilities increases rapidly. Also, every
chiral isomer will of course have an enantiomer. The absence or
presence of a mirror plane in any isomer is easy to spot.

2.3. Harder: Polytwistane Isomers. Polytwistane is a 1D
helical structure of irrational pitch, ie., Z.y = infinite. It takes
very little distortion per atom to make a rational pitch polymer
out of it, with Z . = 12 (Figure 8). In either case Z,, = 1.
The structure has a screw axis along the thread axis, and
perpendicular to it two different C, axes pass through the
center of every C—C bond and intersect with the screw axis.
Note that these C, axes are of two distinct types, one passing
through centers of two C—C bonds, and the other passing
through the center of one C—C bond and the center of a ring
on the opposite side. We use C, and C,’ to denote the two
types in Figure 8. These symmetry operations will be used in
the enumeration to eliminate duplicate structures.

An interesting structural feature of polytwistane is that all six-
membered rings (6mrs) are in twist-boat conformation —
hence the name. One easily recognizes a few twist boats in
Figure 8, but many of them are less clear. We will show this in
detail below. We note here that simply from the fact that all
rings are twist boats, i, they are all the same, one can
acclimate to the idea that polytwistane has Z,,,, = 1.

Following the same procedure of enumerating isomers, we
start by numbering the rings. In Figure 9 top left, different
colors indicate different rings; three 6mrs are numbered.
Looking down the thread axis from the top, ring atoms of all
6mrs are numbered 1 through 6, clockwise. In the second 6mr
(blue), the atoms are numbered with primes and in such a way
that atom 1’ is connected to atom 6 of the first ring. There are
also 2'—3 and 4'—5 connections. The third ring is numbered in
a similar fashion but with double primed numbers. We obtain
three intertwined CH strands running along the axial direction:
-1-6-1'-6'-1"—-6"—, —2—3-2'-3'-2"—-3"—, and —4—5—
4'—5'—4"—-5"—. Polytwistane is a triple helix in this sense.
Obviously, atoms with the same number, primed or unprimed,
have the same connection pattern, which clearly shows that all
6mrs are topologically equivalent (i.e., Zyp, = 1).

For the Z.y = 12 polytwistane approximant any nitrogen-
substituted threads with Z,,, = 1, 2, 3, 4, 6, or 12 will be
commensurate. The number of isomers grows very quickly with
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Figure 8. Structure of polytwistane. Symmetry elements of this
structure include a screw axis and C, axes passing through the center
of every C—C bond and intersecting the screw axis. Three C, axes are
shown; only two are distinct, others being generated by helical
symmetry operations. Building a physical model of this structure is
instructive and aesthetically rewarding.

increasing Z,,,,- We enumerate here only Z,,,, < 3; some Z
= 4 isomers are given in the SL

Next we derive the mapping rules used to eliminate duplicate
structures. The four structures in Figure 9 are the same
structure viewed from different directions. Let us focus on the
top left one, which shows the twist-boat conformation most
clearly for the first ring (dashed oval with orange numbering).
A counterclockwise (looking down from top) rotation of about
30° leads to the top-middle structure, in which the twist-boat
conformation is clearest for the second ring (with blue
numbering). A translation upward along the axial direction of
the top middle structure takes it back to the top left structure.
What we just described is a screw symmetry operation —
rotation plus translation — that transforms the first ring to the
second. A set of correspondences (set 1 in Figure 9) is thus
derived for this symmetry operation, which simply says that the
unprimed ring is equivalent to the primed ring. Repeating this
screw operation will relate the first ring to the third ring and so
on, so that the unprimed, primed, and double primed numbers
are equivalent. This is extremely useful in looking for
duplicates, because one can freely add or drop primes for an
identifier, as long as one does so consistently for all numbers in
an identifier.

topo
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Figure 9. Ring position numbering and mapping rules in polytwistane. Three sets of correspondences were derived corresponding to three symmetry
operations — two screw rotations with different screw angles and a C, rotation. Note that the C, rotation reverses the thread direction.

Starting from the top-middle structure, if one does the screw
operation with a different screw angle, about 130° counter-
clockwise, one reaches the top-right structure, in which the
clearest twist-boat ring (dashed oval) comprises four atoms
from the second ring and two from the third ring. Mapping
rules for this screw rotation are given as set 2 in Figure 9, which
simply relates odd numbers to odd numbers and even numbers
to even numbers. Although we only list six pairs of relations in
set 2, when they are coupled with set 1 one can derive that all
odd numbers are equivalent, as are all even numbers.

It has been shown that all carbons in polytwistane are
equivalent,” which means that the sets of odd and even
numbers must also be equivalent. One gets this relation from
C, operations. The bottom structure in Figure 9 is produced by
a 180° rotation about the C, axis passing through the centers of
bonds 1'—6’ and 3'—4' of the middle (blue) 6mr. The set of
correspondences derived from the C, rotation (set 3) indeed
shows that odd-number positions are equivalent to even-
number positions.

Important in applying the correspondences arising from the
C, axes is to realize that the polymer is flipped up/down by
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these operations, so one must take care to reverse the sequence
of numbers in the identifiers.

In summary, the three sets of mapping rules ensure that, for a
given position in a given ring, every other position in the same
ring is equivalent (sets 2 and 3), and this equivalency
propagates to adjacent rings throughout the entire structure
(set 1). The three sets of correspondences demonstrate that
every position is equivalent and, as we found, are sufficient to
eliminate duplicates. However, again, we do not formally prove
that this group of three sets is minimal.

Figure 10 lists the identifiers for pyridine polymers of
polytwistane with Z,,,, < 3, with distinct ones in red. The star
symbol denotes isomers with N—N bonds. Lists for some Z
= 4 are given in the SI. For Z,.,, = 1 there is only one distinct
structure, since every position is equivalent. For Ziopo =2 there
are 7 distinct isomers, with two whose identifiers start with 2
(23’ and 25’). Since every position is equivalent, one should be
able to transform any identifier so that it starts with 1. That is
true, but when we do such transformations for 23’ and 25’, we
obtain 23’ = 3'2 = 1’6’ and 25’ = §'2 = 1’4’ (the first equation
uses translation, and the second equation uses set 2 in Figure
9), in which the two nitrogens are in the same ring. This

topo
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Figure 10. Isomer list for Z,,,, < 3 pyridine threads of polytwistane.
Distinct isomers are in red. X and M are defined in the text. The

starred isomers contain adjacent N atoms.

phenomenon arises due to the multiple partitions into rings,
similar to the case of the zipper polymer.
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For Z.,, = 3, there are 27 distinct isomers. Several
interesting points can be made. First, traveling down and up
along the axis are different. Take 12'3” and 3'2"1 as an
example. The former is a sequence of 123 down the thread; the
latter is the same sequence traveling up the thread. They are
not the same, as 3'2"1 = 13'2” # 12'3". Second, as mentioned
before, a C, operation reverses the thread direction, so that the
identifier should also be reversed. Take the example 13'4”
34'6" 12'4". The first equation makes use of the
correspondences of set 3, and the second equation makes use
of the correspondences of set 2. Note that the C, rotation
reverses the sequence, so that 13'4” = 34'6”, not 64'3". 34'6”
and 64'3” are not the same; they would be, only if there were
mirror planes perpendicular to the thread axis.

During the enumeration, we noticed that the primes and
double-primes used to differentiate rings can be dropped if we
carefully avoid transforming two nitrogens into one ring by
correspondences of set 2. Dropping the primes and double-
primes simplifies the identifiers, but one should keep in mind
that each number in, for instance, 223 indicates a nitrogen
position in a different ring.

In the enumeration and subsequent examination of
duplicates in Figure 10, we first examined the isomers 1XM
one by one. However, one can also examine a batch of isomers
at the same time. For example, using the C, correspondences,
one gets 36X = Y14 = 14Y, where X + Y = 7. One immediately
finds that all 36X are duplicates of 14Y, which are already
examined. Similarly, 4XM = NY3 = 3NY, where X + Y = 7 and
M+N-=7.

Once again, we have identified the isomers with adjacent N
atoms, likely disfavored in energy, with a starred entry in Figure
10.

2.4. Polymer . Polymer I has Z,,,, and Z = 2. There is
one vertical mirror plane and two distinct C, axes in this
structure. Figure 11 shows two views of the polymer and the
symmetry operations in it.

Figure 11. Symmetry elements in polymer 1.

Polymer I differs from the other two polymers discussed
above in that there are two choices of six-membered rings, and
the rings from the two choices have different topology.
Specifically, as shown in Figure 12, one choice results in rings
with a 4—2 connection, i.e., four bonds going up and two going
down, or vice versa (previously called “class II”*). The other
choice gives rings with a 3—3 connection (class r®).

We derived the correspondences based on the symmetry
elements and enumerated isomers, as we did above for two
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Figure 12. Two choices of rings and the respective numbering in polymer I

other polymers, but here for both choices of rings. Then we
derived the correspondences between the numberings of the
two ring choices and used them to eliminate duplicates that are
distinct within their given ring choice. This is less complicated
than it reads. We list in Figure 13 the distinct isomers. Details
of the enumeration are given in the SI. In total there are 14
distinct isomers for pyridine threads of polymer I type, given

Loyt = 2.

Figure 13. Distinct isomers for Z,,, < 2 pyridine threads of polymer L
Starred isomers contain adjacent nitrogen atoms.

2.5. A Scheme for Computer-Based Isomer Enumer-
ation, lllustrated for Tube (3,0). The previous examples
illustrate how polymer symmetry can aid isomer enumeration.
It is also clear, though this was not said explicitly, that for higher
Z, this is a job for a computer. In this section we show how
such a program operates for the case of tube (3,0) isomers. We
first follow a procedure similar to that we used in previous cases
to identify the symmetry elements in tube (3,0) and the sets of
correspondences associated with the symmetry operations.
Then we implement such symmetry operations into a computer
program, letting it run through all identifiers, eliminating
duplicates for any given Z,,.

2.5.1. Symmetry Elements and Notations. Tube (3,0) has
an achiral structure with Z,,,, = 1 and Z; = 2. It has a 3-fold
axis of rotation (C,) along the thread axis (which is also the
screw axis), three vertical reflection planes (o,), horizontal
refection planes (0y), and 2-fold axes of rotation (C,)
perpendicular to the thread axis (Figure 14). Not all of the
symmetry elements are needed to derive the minimum sets of
correspondences that are sufficient for eliminating duplicate
structures. Here we choose the 60° screw rotation (counter—
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Figure 14. Two views of the tube (3,0) structure and the symmetry
operations in it and the numbering of atoms in tube (3,0).

clockwise), C, and o,. The sets of correspondences associated
with the three symmetry operations are shown in Figure 15.

Figure 1S5. Numbering of atoms in tube (3,0) and sets of
correspondences.

As shown in Figure 15, we number the ring positions
clockwise, looking down the thread. The position 1 of the first
ring (orange numbers) is so chosen such that the atom at this
position bonds “down” to position 1’ of the second ring (blue
numbers). The colloquial descriptors “bonding down” and
“bonding up” refer to the direction of bonds when the thread is
placed vertically. Note the different bonding directions of
positions 1 and 1'.

2.5.2. Implementation into a Computer Program. Each
pyridine thread structure is assigned an identifier with the
number indicating the N positions. The identifier is treated as
an array in the program; a symmetry operation is implemented
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as a numerical operation on each of the digits in the array,
resulting in a new array. The general flow or algorithm of the
program is as follows (exemplified by Z = 4 threads):

1. List All Isomeric Possibilities Including Their Mirror
Images. The isomeric possibilities for Z = 4 threads are simply
the combinatorial possibilities for four numbers, each running
through 1-6, ie, 1111, 1112, .., 6666. Note that we drop the
primes for the numbers, keeping in mind that the second place
is not the same as the first place (e.g, position 1 in the second
ring is not the same as position 1 in the first ring). We make use
of the sets of correspondences for o, in Figure 15 to generate
the mirror images. The identifier is stored as an array, for
example, A = [1 2 3 4].

2. Apply the Screw and C, Rotations to Both the Original
Structures and Their Mirror Images. The goal here is to search
all identifiers that correspond to the same structure. See the SI
for how one can guarantee that one finds all equivalent
identifiers.

We call a 60° rotation (counterclockwise) an a operation.
Using the correspondences in Figure 15, applying operation «
once to the identifier 1234, one gets @A = [6 1 2 3]. Applying &
twice to A, one gets @’A = [5 6 1 2], and three times a’A = [4 S
6 1]. It is easy to see that applying operation @ n times to an
array results in a new array with n subtracted from each
element, ie, @"A = A — n; if the resulting number in the new
array is <0, then 6 is added to that number to produce a
positive number. Figure 16 illustrates the @ operation. Note

Figure 16. Illustration of symmetry operation & (60° counterclockwise
rotation) on a structure with an identifier 1234 and a shift along the
thread axis after rotation. @ [1234] =[6123]=[1236].

that the a operation changes the orange-numbered ring to blue-
numbered ring and vice versa. A shift of the unit cell is
necessary in order for the first number of the identifier to be
associated with the orange-numbered ring.

We call a C, rotation a f# operation. This operation turns the
topological unit cell upside down, thus reversing the order of
the rings and the bonding directions of C/N atoms. The
correspondences for C, in Figure 15 show that, except for 11,
the two number on both sides of each arrow add up to 8. For
instance, as shown in Figure 17, applying f§ to [1 3 1 4], one
gets f[1314]=[4151].

3. Choose the Smallest Identifier (Here Viewing It as a
Number) To Represent the Distinct Structure. In step 2, for
each identifier we have generated all equivalent identifiers that
correspond to the same structure. In this step, we pick the
smallest identifier to represent the distinct structure and
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Figure 17. Illustration of symmetry operation f§ (C, rotation). f [13 1
4] = [4 1 5 1]. The lines at the bottom show that, except 1, the two
corresponding numbers in the old and new array add up to 8. Also
notice the reversal of the order of the digits.

remove all other equivalent identifiers to obtain a final result.
Note that a structure and its mirror image are treated as the
same, even though they may have opposite chirality (e.g, 12 =
16; and we only print out 12). We also convert supercells to
fundamental unit cells, e.g,, 121212 = 1212 = 12.

4. Optimization of the Code. One can use a similar
algorithmic structure for enumerations of isomers in any thread
type, being aware that different symmetries in different threads
give rise to different numerical operations on the identifier
array. Additional optimization of the code may be obtained by
imposing constraints derived from thread-specific symmetry
considerations or chemical intuition. For example, in listing the
isomeric possibilities in step 1, one only needs to list those with
identifiers starting with 1, since all isomers with identifiers
starting with 2—6 can be transformed to identifiers starting with
1 by screw operations and/or C, operations discussed above. In
other words, we do not have to list all 1111 to 6666 candidates
but only 1111 to 1666. This constraint reduces the
computation cost to 1/6 of the original.

Here is another example of optimization of the code. In step
one, we list all possible identifiers and store the list in computer
memory. In step 2, we search for equivalent identifiers for 1111,
1112, .., 1666 in an ascending order (see the SI for how to find
all equivalent identifiers without missing one). Since identifier
1111 has the smallest number, its equivalent identifiers must
have numbers greater than 1111. Now we delete those
identifiers that are equivalent to but greater than 1111 from
the list, so that we do not need to examine symmetry
operations for those identifiers again. One realizes that there is
no equivalent identifier to 1111 in the range of 1111—1666.
This optimization allows us to do symmetry operations only on
identifiers with relatively small numbers instead of all of them

and will cut down the computational cost to approximately
1

2XZ,

. After those optimizations, it only takes under a second
topo
for a modest laptop computer to find the topologically distinct
isomers for Z,,,, = 4. The case Z,,,, = 6 takes 20 times longer,
which underlines the importance of optimizations as the thread
repeat unit increases.

There might be more efficient implementations of the

algorithmic process suggested. The idea here is to show how
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one can use the computer to assist in the enumeration,
especially for large topological unit cells. Our code (Matlab)
can enumerate any even Z,, = 4, 6, ... for pyridine threads of
tube (3,0) type; the code is given in the SI. We list in Figure 18

Figure 18. Distinct isomers for Z,,,, = 2 and 4 pyridine threads of tube
(3,0), 38 in total. Starred isomers contain adjacent nitrogen atoms.

the topologically distinct structures for tube (3,0) pyridine
threads with Z,,,, = 2 and 4; the ones with neighboring N
atoms are designated by *. The isomers for Z,,,, = 6 are listed
in the SI

opo

3. CONCLUSION

There are many possible benzene nanothreads, one-dimen-
sional fully saturated polymers of composition (CH),. If one
substitutes for a hydrogen or replaces a heteroatom E for CH,
as in (CH);CR or (CH);E, the number of isomeric possibilities
grows further. We provide a methodology for exhaustively
enumerating the isomeric possibilities, using sets of atom
correspondences or mapping rules that follow from transla-
tional or point-group symmetries.

At first sight, it might seem that we have in fact introduced
two methods. In fact they are the same, both making use of the
polymer symmetries. The difference is only that the second
method (shown explicitly for tube (3,0)) is explicitly adapted
for the enumerating capabilities of a computer program.

That we get 1, 7, 27 distinct isomers for (CH)E in a
polytwistane thread with Z,,,= 1, 2, 3, respectively, is not as
important as the fact that we have a symmetry-based
algorithmic procedure for generating these and eliminating
duplicates. The methodology is widely applicable to other
polymers as well. We will next proceed to put an energy metric
on the various isomers, to search for regularities in the isomer

stability of pyridine nanothreads.
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B NOTE ADDED IN PROOF

We direct the reader also to several papers on nitrogen-
containing saturated threads. Please see refs 12, 13, and 14.
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