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Applications of the Hückel (tight binding) model are ubiquitous in quantum chemistry
and solid state physics. The matrix representation of this model is isomorphic to an
unoriented vertex adjacency matrix of a bipartite graph, which is also the Laplacian
matrix plus twice the identity. In this paper, we analytically calculate the determinant
and, when it exists, the inverse of this matrix in connection with the Green’s function,
G, of the N×N Hückel matrix. A corollary is a closed form expression for a Harmonic
sum (Eq. (12)). We then extend the results to d�dimensional lattices, whose linear size
is N. The existence of the inverse becomes a question of number theory. We prove
a new theorem in number theory pertaining to vanishing sums of cosines and use it
to prove that the inverse exists if and only if N + 1 and d are odd and d is smaller
than the smallest divisor of N + 1. We corroborate our results by demonstrating the
entry patterns of the Green’s function and discuss applications related to transport and
conductivity. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977080]

I. PROBLEM STATEMENT: THE HÜCKEL MODEL AND ITS GREEN’S FUNCTION

The Hückel or tight binding model was originally introduced to describe electron hopping on a
one-dimensional chain or ring.13 It has come to serve as a ubiquitous model in solid state chemistry
and physics.3,13 Two typical forms of the Hückel matrix, for a linear chain of N atoms, and for a cycle
of N atoms, are given in Eq. (3). The resulting banded matrix is isomorphic to the vertex adjacency
matrix of a graph.12

The diagonal entries of the Hückel Hamiltonian matrix are defined by the Coulomb integral,
α = 〈χi |Ĥ | χi〉, where χi is the basis function of 2pzAO of the ith carbon atom. The magnitude of
α can be approximated by the ionization potential of a carbon atom. It is reasonable to assume that
all carbon atoms have the same ionization potential, resulting in an approximation that all diagonal
elements have the same value, which is denoted by just α.

An off-diagonal element of the Hückel Hamiltonian matrix is typically called the resonance
integral, βi, j, defined as βi, j = 〈χi |Ĥ | χj〉. This is a measure of the interaction between the ith and
jth carbon atoms. Usually βi, j is neglected if there is no bond between the ith and jth carbon atoms.
It is reasonably assumed that all the carbon-carbon bonds have the same strength, resulting in an
approximation that all non-zero off-diagonal elements have the same value, which is denoted by
just β.

If there are no heteroatoms in the system, all Coulomb integrals can be considered identical.
However, if there is a heteroatom, we need to modify the Coulomb integral properly. When one cal-
culates a linear π−conjugated chain, namely, a polyene, all resonance integrals cannot be considered
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identical, if there is bond alternation, as obtained normally. We address this problem later on. In a
small π−conjugated cycle, termed annulene, there is no bond alternation, so all resonance integrals
can be considered identical. However, as the cycle gets large, bond alternation sets in (see Refs. 15
and 29).

A. Mathematical statement of the problem

Therefore, in the simplest version of both physical and chemical models, the matrix representation
of the electronic Hamiltonian for a network of orbitals (one per atom, say carbon 2pz), is characterized
by diagonal matrix elements α, which we may without loss of generality set equal to zero, and off-
diagonal elements β (or t), where two atoms are neighbors. If we use units of β (β is negative),
we may replace these nearest neighbor interactions by unity, 1. All other (non-nearest neighbor)
interactions are set equal to 0.

The eigenvalues and eigenvectors of these matrices are well known for the linear chain and
cycles.13 For the finite linear chain (the banded matrix at left in Eq. (3)), they can be written, respec-
tively, as cosines and sines, as follows. Let λr and |ψr〉 be the rth eigenvalue and the corresponding
rth eigenvector, then

λr = 2 cos rω in units of β, (1)

|ψr〉=

√
2

(N + 1)
[sin (rω) , sin (2rω) , . . . , sin (Nrω)]T , (2)

where ω ≡ π
N+1 and 1 ≤ r ≤N is an integer. The Hückel matrix for a linear chain, whose matrix

representation is a symmetric tridiagonal matrix [Ref. 18, for a review], and a N–membered ring,
which is a circulant matrix,6,11 respectively, are

H1 =



0 1
1 0 1

1 0 1

1 0
. . .

. . .
. . . 1
1 0



, Hc
1 =



0 1 1
1 0 1

1 0 1

1 0
. . .

. . .
. . . 1

1 1 0



, (3)

where to emphasize the one-dimensional structure of the molecular system, we put a subscript 1 on
H and denote the Hamiltonian by H1. From now omitted entries are zeros; we will explicitly write
down the zeros when it helps the presentation.

The Hückel model has found renewed significance in recent experimental and theoretical stud-
ies of molecular conductance, that is, transmission of a current through a molecule [Ref. 21, and
references therein].

The Green’s function matrix, G, is defined via the resolvent as

G (r, s; E)= 〈r |
1

E − H
|s〉, (4)

where G (r, s; E) is the r, s entry of the Green’s function matrix, H is the Hamiltonian, and E is an
energy.

The Green’s function plays an important role in the calculation of transport phenomena such as
conductivity.5 In the simplest form of the theory, the conductance between electrodes connected to
sites r and s of a molecule is proportional to the square of the absolute value of the matrix element
of the unperturbed Green’s function,

G(0) (r, s; E)=
∑

k

CrkC∗sk

E − εk + iη
, (5)
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where Crk is the coefficient of the rth atomic orbital (AO) in the kth molecular orbital (MO) in an
orthogonal basis, εk is the kth MO energy, and η is an infinitesimal positive number to assure analyt-
icity. The Fermi energy is equal to the Coulomb integral of the Hückel model, and for convenience
we set this energy to zero (see Subsection I B).

For the DC conductivity, we want to evaluate the Green’s function at the Fermi energy; therefore
E = 0 in Eq. (4). By the Sokhotski–Plemelj theorem, limη→0+

1
x±iη =P( 1

x ) ∓ iπδ(x), the real part of
the Green’s function (Eq. (5)) is

G(0) (r, s; E = 0)=−
∑

k

CrkC∗sk

εk
. (6)

Therefore, the Green’s function in the basis described above (Eqs. (1) and (2)) for a finite open linear
chain has entries that are

G(0) (r, s; E = 0)=−
1

N + 1

N∑
k=1

sin (rkω) sin (skω)
cos (kω)

in units of β−1, (7)

ω ≡
π

N + 1
.

Below, for simplicity, we denote G (r, s)≡G(0) (r, s; E = 0).

Remark 1. G(0) is simply −H−1
1 in the basis given by Eqs. (1) and (2). Generally, with energy

set-point E = 0, the Green’s function is minus the inverse of the Hamiltonian. We compute the
inverses of H1 and Hc

1 in several ways—from general formulas for tridiagonal matrices, directly
from simple equations for the first column of the inverses, and from factoring the matrix symbol
eiθ + e−iθ .

Our goal is to prove the conditions under which the inverse of various forms of the Hückel model
exists for different N and in d–spatial dimensions. When it exists, we analytically derive closed-form
formulas for the Green’s function G(0).

B. Level set of the Fermi energy

The position of the actual Fermi levels in a calculation of molecular transmission may
vary. It has proven to be a good approximation to set it equal to the Coulomb integral of the
Hückel method for most rings and chains (the limitations of this assumption will be mentioned
later).

There is a good reason why we assume EF = α. The energy level of the 2p atomic orbital (AO)
of carbon (�11.4 eV, the same energy level as the Coulomb integral), is almost the same as that of the
6s AO of the widely used Au electrode (�10.9 eV).2 Note that the electronic configuration of Au is
5d106s1. This approximation works well as long as significant charge transfer between the molecule
and the electrode surface does not occur.30

The assumption that the Fermi level is equal to the Coulomb integral of the Hückel method is
probably valid for even-membered chains and rings with 4n + 2 atoms.

II. DETERMINANTS AND ANALYTICAL EXPRESSIONS FOR H−1
1 AND

(
Hc

1

)−1

A. Open chain, H1

Lemma 1. H1 is only invertible when N is even, in which case det (H1)= (−1)N/2.

Proof. Generally for any N,

det (HN )=−det (HN−2)= · · ·= (−1)
N−2

2 det (H2)= (−1)
N−2

2

�����
0 1
1 0

�����
= (−1)N/2 N even,

det (HN )=−det (HN−2)= · · ·= det (H1)= |0| = 0 N odd,



033505-4 Movassagh et al. J. Math. Phys. 58, 033505 (2017)

where we denoted H1 of size N ×N , simply by HN and the determinant of a matrix by |·|. In Eq. (7),
cos (kω) can take a zero value if N is odd, whereby G (r, s) is not defined. �

Proposition 1. When N is even, the entries of the Green’s function G (r, s)≡−H−1
1 (r, s) are

G (r, s)=




(−1)
r+s−1

2 r < s : r odd and s even

(−1)
r+s−1

2 r > s : r even and s odd

0 otherwise

, (8)

G=−H−1
1 =



0 −1 0 +1 0 −1 · · ·
−1 0 0 0 0 0
0 0 0 −1 0 +1
+1 0 −1 0 0 0 · · ·
0 0 0 0 0 −1
−1 0 +1 0 −1 0 · · ·
...

...
. . .



. (9)

Proof. Suppose we have a general tridiagonal matrix

A=



b1 c1

a1 b2 c2

a2 b3
. . .

. . .
. . . cN−1

aN−1 bN



,

then Usmani’s formula27 for the r, s entry of A�1 is

α (r, s)=



(−1)r+scrcr+1 · · · cs−1θr−1φs+1/θN r < s
θr−1φr+1/θN r = s

(−1)r+sas+1as+2 · · · arθs−1φr+1/θN r > s
, (10)

where θr and φs satisfy second order recursion relations

θr = brθr−1 − arcr−1θr−2, r = 1, 2, . . . , N − 1, N ,

φs = bsφs+1 − csas+1φs+2, s=N , N − 1, . . . 2, 1,

with the initial conditions θ−1 = 0, θ0 = 1, φN+1 = 1, and φN+2 = 0.
We are interested in the special case where bi = 0, ci = ai = 1 for all i. The recursion relations

are now given by

θr =−θr−2, r = 2, 3, . . . , N ,

φs =−φs+2, s=N , N − 1, . . . , 2, 1.

The solutions, after imposing the initial conditions, are

θr =
ir

2
[
1 + (−1)r ] , φs =

i−(N+1)+s

2
[
1 − (−1)s] .

Substituting these in Eq. (10) and multiplying by �1, we obtain G=−H−1
1 ,

G (r, s)=




i3(r+s−1)

4

[
1 + (−1)r−1

] [
1 − (−1)s+1

]
r < s

ii2(r−1)

4

[
1 + (−1)r−1

] [
1 − (−1)r+1

]
r = s

i3(r+s−1)

4

[
1 + (−1)s−1

] [
1 − (−1)r+1

]
r > s

, (11)

�
By symmetry we may focus on r ≥ s. In Eq. (11) the only nonzero elements, for r ≥ s, correspond

to r even and s odd, in which case G (r, s)= i3(r+s−1) = (−1)
r+s−1

2 .
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Corollary 1. The closed form expression for the following sum gives the identity:

−
1

N + 1

N∑
k=1

sin (rkω) sin (skω)
cos (kω)

= (−1)
r+s−1

2 , (12)

when r is even and s < r is odd. Otherwise, G (r, s)= 0 when s ≤ r and G (r, s)=G (s, r) when r ≤ s.

This is the Green’s function in an orthonormal basis. A purely trigonometric derivation, which
does not use the Hückel matrix and serves as an alternative proof of Eqs. (8) and (12), is presented
in the Appendix.

Remark 2. Formulas for the inverse of a tridiagonal Toeplitz matrix have been given by Schlegel20

and Mallik16 in terms of Chebyshev polynomials.

In quantum chemistry, it was known that G (r, s)= 0 when r and s have the same parity. These
zeros can be derived from a property called “alternancy” (the original proof is due to C. A. Coulson
and G. S. Rushbrooke4). If the interacting orbitals of a molecule can be divided into two disjoint
sets, where the atoms of one set are adjacent only to atoms of the other set, the molecule is said
to be alternant. For alternants, for instance the linear chain studied here, a number of results can
be proved; for instance the energy levels are paired positive and negative, and in paired levels the
coefficients of one set of atoms are just minus the coefficients of that set in the paired level. It follows
that G (r, s)= 0 when r and s have the same parity. The other zeros and ±1 entries, as far as we know,
were not noticed.

In chemical applications one often has to deal with the special case of alternating bond strengths
along a chain. The proposition below gives the form of the Hamiltonian and its corresponding Green’s
function.

Definition 1. The bond alternating Hamiltonian is defined by Halt for N even, where

Halt =



0 β
β 0 α
α 0 β

β 0
. . .

. . .
. . . α
α 0 β

β 0


Comment: In this special limit, the Toeplitz structure is lost. α in this definition is not related to

the one discussed above, which stood for the diagonal elements and was taken to be zero.

Proposition 2. The entries of the Green’s function G≡−(Halt)−1, are given by

G (r, s)=




(−1)
r+s−1

2

4
1
β

(
α

β

) r−s−1
2

{1 − (−1)s} {1 + (−1)r } , r ≥ s

(−1)
r+s−1

2

4
1
β

(
α

β

) s−r−1
2

{1 − (−1)r } {1 + (−1)s} , r ≤ s.

(13)

Proof. The form can be derived using the same techniques as above. �

B. Cyclic chain, Hc
1

The cyclic Hamiltonian is a circulant matrix and therefore diagonalizable in Fourier basis.6,11,22

Let ωj = exp (2πij/n), the eigenpairs are

λj = 2 cos (2πj/n) , j = 0, 1, . . . , n − 1

vT
j =

1
√

n

(
1,ωj,ω

2
j , . . . ,ω(n−1)

j

)
.
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In particular when n = 4j, the matrix has zero eigenvalues and hence non-invertible. The following
lemma sharpens this notion.

Lemma 2. The determinant of Hc
1 is given by

det
(
Hc

1

)
=




−1 N = 2
2 N = 2k + 1
0 N = 4k
−4 N = 4k + 2

, for k ∈N.

Proof. When N = 2, trivially
�����
0 1
1 0

�����
=−1. When N is odd, we express

Hc
1 =

[
HN−1 B

C D

]

where C =
[

1 0 · · · 0 1
]
, B=CT , D = 0 and HN�1 is an N − 1 × N − 1 version of H1 (open chain) as

defined above, which is invertible. With this decomposition, the structure of H−1
1 derived above, and

the well-known fact about the determinant of block matrices we arrive at

det
(
Hc

1

)
=−det (HN−1) det

(
CH−1

N−1B
)
= det

(
CH−1

N−1B
)
= 2.

When N is a multiple of 4, one can easily check that the vectors v1 ≡ [0,−1, 0, 1]T and
v2 ≡ [1, 0,−1, 0]T generate the kernel of Hc

1 . Namely, if Hc
1 is a 4k × 4k matrix, then the k–fold

concatenations [v1v1 · · · v1]T and [v2v2 · · · v2]T are in the ker
(
Hc

1

)
. Moreover, since excluding the

last two rows and columns of Hc
1 gives H4k�2, which is invertible, we conclude that the two vectors

are a basis for the kernel of Hc
1 .

Lastly, if N is even yet not a multiple of 4, we write Hc
1 =

[
HN−2 B

BT D

]
, where BT =

[
0 · · · 0 1
1 0 · · · 0

]

and D=

[
0 1
1 0

]
. Here HN�2 has a size that is a multiple of 4. Using the techniques above, we

obtain

det
(
Hc

1

)
= det (HN−2) det

(
D − BT H−1

N−2B
)
= det

(
D − BT H−1

N−2B
)

= det

( [
0 1
1 0

]
−

[
0 −1
−1 0

])
=−4.

�

Definition 2. A Toeplitz matrix is a matrix that is constant along diagonals. A circulant matrix
is Toeplitz, and each column is a cyclic shift of the previous column.11,23 Thus the lower triangular
part of a circulant determines the upper triangular part,

Toeplitz A=



x0 x−1 x−2

x1 x0 x−1

x2 x1 x0


or



x0 x−1 · · · x−(N−1)

x1 x0
...

...
. . . x−1

xN−1 · · · x1 x0



,

Circulant A=



x0 x2 x1

x1 x0 x2

x2 x1 x0


or



x0 xN−1 · · · x1

x1 x0 x2
...

. . .
...

xN−1 xN−2 · · · x0



.

The inverse of a circulant matrix is circulant. The inverse of a Toeplitz matrix is not in general
Toeplitz.
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A Toeplitz matrix T has (r, s) entries that depend on r �s. Therefore specifying the first row and
the first column fully specifies the matrix. Specifying the first column (or row) is sufficient to specify
a circulant matrix.

Proposition 3. The N × N Hückel circulant matrix Hc
1 is invertible for N , 4k. The first column

of the inverse is

N = 4k + 1 (x0, x1, x2, x3, . . . ) =
1
2

(1, 1,−1,−1, repeat) ,

N = 4k + 2 (x0, x1, x2, x3, . . . ) =
1
2

(0, 1, 0,−1, repeat) ,

N = 4k + 3 (x0, x1, x2, x3, . . . ) =
1
2

(−1, 1, 1,−1, repeat) .

The matrix representation is shown in Fig. 1.

Proof. Hc
1 (see Eq. (3)) is a symmetric circulant matrix, so its inverse is also a symmetric circulant.

Thus xk = xN�k for 0 < k <N/2. The matrix Hc
1 (with two cyclic diagonals of 1’s) multiplies the first

column (x0, . . . , xN−1) of its inverse to give the first column of the identity matrix,



0 1 1
1 0 1

1 0
. . .

. . .
. . . 1

1 1 0





x0

x1

x2
...

xN−1



=



1
0
0
...
0



.

In the first row, symmetry changes x1 + xN�1 = 1 to 2x1 = 1 and x1 =
1
2 . Then the odd-numbered

rows produce x3, x5, x7, . . . with alternating signs,

x1 + x3 = 0 so that x3 =−
1
2

,

x3 + x5 = 0 so that x5 =+
1
2

, (14)

etc.

The even numbered rows also produce alternating signs,

x0 + x2 = 0 so that x2 =−x0,

x2 + x4 = 0 so that x4 =+x0, (15)

etc.

Finally the last row gives x0 = �xN�2. This produces the three separate possibilities for the inverse
matrix in Proposition 2,

FIG. 1. The Toeplitz structure of Gc
1 =−

(
Hc

1

)−1
.
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N = 4k + 1 xN−2 = x4k−1 =−
1
2

by Eq. (14) and then x0 =
1
2

,

N = 4K + 2 xN−2 = x4k = x0 by Eq. (15) and then x0 =−x0 = 0,

N = 4k + 3 xN−2 = x4k+1 =+
1
2

by Eq. (14) and then x0 =−
1
2

.

The alternating signs for x0, x2, x4, . . . complete the inverse circulant matrix
(
Hc

1

)−1
. The Green’s

matrix is defined as Gc
1 ≡−

(
Hc

1

)−1
and is shown in Fig. 1 �

Remark 3. The same direct approach produces H−1
1 in the non-circulant case. The (1, n) and

(n, 1) entries of Hc
1 are now set to zero. Then the first equation in Eq. (14) is simply x1 = 1. The other

equations in Eq. (14) give alternating signs for x3, x5, . . . .
Similarly, the last equation in Eq. (15) is now xN�2 = 0. The first column (x0, x1, . . . ) of H−1

1 is
seen to be (0, 1, 0, �1, repeat). The last column of H−1

1 has these components in the reverse order.
Then by symmetry we also know the first and last rows of H−1

1 .
Because H1 is tridiagonal, these two columns and two rows completely determine the rest of

H−1
1 . On and above the main diagonal, all sub-matrices of H−1

1 have rank 1 (If H1 is tridiagonal and
invertible then H−1

1 is a “semi-separable” matrix.28). It is easy to see that starting from the first and
last rows and columns of G in Proposition 2, all other entries of G follow directly from the rank 1
requirement.

Proof. (alternative to Proposition 3) We now establish the inverse of Hc
1 using a technique that is

general to circulant matrices based on the factorization of the symbol. Hc
1 = S + S−1 = S + ST , where

S is the N × N cyclic shift matrix: SN = I. Since S + S−1 = (I − iS) (I + iS) S−1, we have(
S + S−1

)−1
= S(I + iS)−1(I − iS)−1

= S

(
I + (−i) S + · · · + (−i)N−1SN−1

)
1 − (−i)N

(
I + iS + · · · + iN−1SN−1

)
1 − iN

. (16)

The denominator is
(
1 − iN

) (
1 − (−i)N

)
=




0 N ≡ 4k
2 N ≡ 4k + 1
4 N ≡ 4k + 2
2 N ≡ 4k + 3

. This confirms that Hc
1 is singular for

N = 4k.
The coefficient of SN in the product given by Eq. (16) is the numerator,

iN−1 + (−i) iN−2 + (−i)2iN−3+ · · ·+(−i)N−2i + (−i)N−1 =
iN − (−i)N

i − (−i)
=




+1 N ≡ 1 (mod 4)
0 N ≡ 2 (mod 4)
−1 N ≡ 3 (mod 4)

.

When we divide by the denominators 2, 4, 2 we find the main diagonal of
(
Hc

1

)−1
as the coefficients

of SN = I in
(
S + S−1

)−1
: 1

2 , 0,− 1
2 for N : 4k + 1, 4k + 2, 4k + 3, respectively.

Now we find the coefficient of S = SN +1 in Eq. (16). The numerator is 1 + iN−1 (−i) + iN−2(−i)2

+ · · · + i(−i)N−1 = 1 + (i) (−i)
[
iN−2 + iN−1 (−i)+ · · ·+(−i)N−2

]
. Simplifying the numerator we find

1 + iN−1−(−i)N−1

i−(−i) = 1, 2,−1 for N : 4k + 1, 4k + 2, 4k + 3, respectively.

Dividing by 2, 4, 2 in the denominator, we find 1
2 on the diagonals ±1 of

(
S + S−1

)−1
.

Finally, notice that diagonals 2, 3, 4, 5, . . . of
(
S + S−1

)−1
will have opposite sign to diagonals

0, 1, 2, 3, . . . . The multiplication in the numerator of Eq. (16) gives a cyclic convolution(
1, i, i2, . . . , iN−1

)
?

(
1,−i, (−i)2, . . . , (−i)N−1

)
for the coefficients of S, S2, . . . . Because i2 = �1, the coefficient of Sk+2 in the numerator of Eq. (16)
is the negative of the coefficient of Sk . The denominators are still 2, 4, 2 for N ≡ 1, 2, 3. So the pattern
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in (S + S−1)
−1
=−Gc

1 (starting with the main diagonal) is

N ≡ 4k + 1 diagonals 1
2 , 1

2 ,− 1
2 ,− 1

2 repeated,
N ≡ 4k + 2 diagonals 0, 1

2 , 0,− 1
2 repeated ,

N ≡ 4k + 3 diagonals − 1
2 , 1

2 , 1
2 ,− 1

2 repeated.

This completes the alternative proof. �

Analogous to Proposition 2, the proposition below gives the form of the cyclic Hamiltonian with
the special case of alternating bond strengths and its corresponding Green’s function.

Definition 3. The cyclic bond alternating Hamiltonian is defined by (N even)

Hc
alt =



0 β α
β 0 α
α 0 β

β 0
. . .

. . .
. . . α

α α 0 β
β 0



.

Comment: As before, this model is not circulant nor has it the Toeplitz structure.

Proposition 4. The entries of the Green’s function −(Hc
alt)
−1 are given by

G (r, s)=−
1
4




(−α/β)
r−s−1

2

β
[
1 −

(
−αβ

)N/2
] [

1 + (−1)r ] [
1 − (−1)s] + (−β/α)

r−s−1
2

α
[
1 −

(
−
β
α

)N/2
] [

1 − (−1)r ] [
1 + (−1)s] r > s

(−α/β)
N+r−s−1

2

β
[
1 −

(
−αβ

)N/2
] [

1 + (−1)r ] [
1 − (−1)s] + (−β/α)

N+r−s−1
2

α
[
1 −

(
−
β
α

)N/2
] [

1 − (−1)r ] [
1 + (−1)s] r ≤ s

.

(17)

Proof. We obtain the inverse by solving for y in Hc
altx= y; that is, we think of y as given and we

solve for x. This will give us x= (Hc
alt)
−1y. First we solve the even rows in terms of the last row xN ,

which itself can be solved from xN =
∑N

i=1 [(Hc
alt)
−1]

N ,i
yi to give

x2k =
1
β




k−1∑
m=0

(
−
α

β

)m

y2k−2m−1



+

(
−
α

β

)k

xN ,

xN = β
−1

[
1 − (−α/β)N/2

]−1
N
2 −1∑
m=0

(
−
α

β

)m

yN−2m−1.

Similarly the odd rows are obtained in terms of x1, which itself can be solved x1 =
∑N

i=1
[(Hc

alt)
−1]

1,i
yi to give

x2k+1 =
1
α




k−1∑
m=0

(
−
β

α

)m

y2k−2m



+

(
−
β

α

)k

x1,

x1 = α
−1

[
1 − (−β/α)N/2

]−1



yN −
β

α

N
2 −1∑
m=0

(
−
β

α

)m

yN−2m−2




.

Combining these equations to solve for the even and odd rows separately and multiplying by an
overall minus sign, we arrive at G=−(Hc

alt)
−1 given by Eq. (17). �
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Comment: In the special case that N = 2k (2k − 1), Gc
1 in Proposition 3 can be obtained from

Eq. (17) by substitutingα = β = 1. Note that in this limit, it is necessary that N , 4k for the denominator
not to vanish in agreement with Lemma 2.

We now pose a more general (and difficult) question. When does the inverse exist in spatial
dimension d and if it does, how can it be computed? In Sec. III we use mathematical tech-
niques borrowed from quantum information theory and number theory to address some of these
problems.

III. HIGHER DIMENSIONAL GREEN’S FUNCTION

The Green’s function we derived is the negative of the inverse of the Hückel (tight binding)
Hamiltonian, whose N × N matrix representation in Dirac notation7 is

H1 =

N∑
k=1

{|k〉〈k + 1| + |k + 1〉〈k |} , (18)

where in units of β the coupling can be taken to be one.
To explore the d–dimensional analog Hd , we use tensor products of matrices. Recall that the

tensor product of an m × n matrix A and an p × q matrix B is the mp × nq matrix defined by

A ⊗ B=



a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB



.

The Hamiltonian, Hd , on a square lattice in d–spatial dimensions (square lattice in d = 2, cubic
in d = 3, etc.), with the linear size N can succinctly be expressed as

Hd =

d∑
i=1

IN i−1 ⊗ H1 ⊗ INd−i , (19)

where H1 is given by Eq. (18), and the size of every identity matrix is indicated by its subscript. In
dimensions 2 and 3, the Hamiltonians come from H1 and I= IN ,

H2 = (H1 ⊗ I) + (I ⊗ H1) , (20)

H3 = (H1 ⊗ I ⊗ I) + (I ⊗ H1 ⊗ I) + (I ⊗ I ⊗ H1) . (21)

Comment: The techniques apply more generally where the lattice can be constructed from d
independent linear subsets.

Comment: When H1 is a Toeplitz or a circulant matrix, the corresponding Hd is gener-
ally not a Toeplitz or a circulant matrix,18 but they will be block Toeplitz or block circulant,
respectively.

The eigenvalue decomposition of H1 =QΛQT , where Λ is the N × N diagonal matrix of eigen-
values whose kth entry is 2 cos kω and Q is the matrix of eigenvectors with rth column given by
Eq. (2). Since cos kω , 0 for all 1 ≤ k ≤N ,Λ is a diagonal matrix with no zero entries on the diagonal
and H1 is invertible, i.e., has a Green’s function, as expected from our calculations.

The associated Green’s function matrix in d dimensions is defined by Gd =−H−1
d . Obtaining

an analytical expression for the inverse in higher dimensions, at first, might seem difficult because
it involves sums of matrices. In d = 2 the size of the lattice is N × N and in d = 3 the size is
N × N × N .

After the eigenvalue decomposition, the Hamiltonians in higher dimensions (e.g., Eqs. (20) and
(21)) read

Hd =Q⊗d



d∑
i=1

IN i−1 ⊗ Λ ⊗ INd−i




(
QT

) ⊗d
(22)

≡Q⊗d { Λd }
(
QT

) ⊗d
, (23)
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where the matrix of eigenvectors denoted by Q⊗d ≡Q ⊗ · · · ⊗ Q is a d-fold tensor product and the
diagonal matrix of eigenvalues is Λd =

∑d
i=1 IN i−1 ⊗ Λ ⊗ INd−i . For example,

H2 =
(
QΛQT ⊗ I

)
+

(
I ⊗ QΛQT

)
(24)

= (Q ⊗ Q) [(Λ ⊗ I) + (I ⊗ Λ)]
(
QT ⊗ QT

)
,

H3 =
(
QΛQT ⊗ I ⊗ I

)
+

(
I ⊗ QΛQT ⊗ I

)
+

(
I ⊗ I ⊗ QΛQT

)
(25)

= (Q ⊗ Q ⊗ Q) [(Λ ⊗ I ⊗ I) + (I ⊗ Λ ⊗ I) + (I ⊗ I ⊗ Λ)]
(
QT ⊗ QT ⊗ QT

)
.

This change of basis allows us to diagonalize the Hamiltonians in any dimension, for example,

Λ2 = (Λ ⊗ I) + (I ⊗ Λ) , (26)

Λ3 = (Λ ⊗ I ⊗ I) + (I ⊗ Λ ⊗ I) + (I ⊗ I ⊗ Λ) . (27)

Below we investigate the conditions under which the Green’s function exists. For now suppose
that it does. Its algebraic representation in d dimensions (compare with Eqs. (22) and (23)) is

Gd =−Q⊗d



d∑
i=1

IN i−1 ⊗ Λ ⊗ INd−i




−1 (
QT

) ⊗d
. (28)

It is clear that if Gd were to exist no eigenvalue can be zero. Namely, diagonal entries being all the pos-
sible sums should satisfy 2

∑d
i=1 cos

(
kiπ
N+1

)
, 0 for any choice of 1 ≤ ki ≤N . Then, the corresponding

eigenvalues of Gd are −1/
{
2
∑d

i=1 cos
(

kiπ
N+1

)}
.

As an illustration let us take d = 2. Then the energies are the diagonal entries of Λ2 given by the
sum

Λ2 = 2



(cosω) I
(cos 2ω) I

. . .
(cos Nω) I



+



Λ

Λ

. . .
Λ



,

which is a matrix of size N2 × N2;Λ and (cos kω) I are (N×N). Since cos kω =− cos [(N + 1 − k)ω],
each block of the sum is 2 (cos kω) I + Λ for some 1 ≤ k ≤N whose (N + 1 − k)th entry is zero.
Therefore, the diagonal N2 × N2 matrix Λ2 has exactly N zeros on its diagonal, one in each of the N
blocks, and hence noninvertible.

IV. GREEN’S FUNCTION AND NUMBER THEORY

The existence of the Green’s function, Gd , in higher dimensions requires that Hd has non-zero
eigenvalues, i.e.,

∑d
i=1 cos

(
kiπ
N+1

)
, 0 for any choice of 1 ≤ ki ≤N .

Lemma 3. H−1
d does not exist in even spatial dimensions.

Proof. Since cos kω =− cos [(N + 1 − k)ω] for any 1 ≤ k ≤N , we can always pair up the cosines
such that each pair sums to zero implying that there is a zero eigenvalue. �

Therefore, below we take d and N + 1 to be odd (as N odd is already non-invertible in one
dimension).

We need to prove the general conditions under which Hd is invertible, which is a problem
in number theory. Recently there has been quite a bit of interest in a closely related question,
which is under what conditions do sums of roots of unity vanish? Besides sheer theoretical inter-
est, this problem is related to many mathematical structures. For example, Poonen and Rubinstein
relate this problem to the number of interior intersection points made by the diagonals of a regular
n–gon.19

Let us denote n≡N + 1. Suppose one asks for what natural numbers d do there exist nth roots
of unity α1, . . . , αd ∈C such that α1 + · · · + αd = 0? Such an equation is said to be a vanishing sum
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of nth roots of unity of weight d. Let n have the prime factorization pa1
1 · · · p

ar
r (ai > 0), then we can

define W (n) to be the set of weights d for which there exists a vanishing sum α1 + · · · + αd = 0; if
the sum does not vanish, then W (n) is simply the empty set.

Before delving into the proof we introduce some notation and terminology presented in Ref. 14.
Let 〈G〉 be a cyclic group of order n and let ζ be a (fixed) primitive nth root of unity. There exists a
natural ring homomorphism ϕ from the integral group ZG to the ring of cyclotomic integers Z

[
ζ
]
,

given by the equation ϕ (z)= ζ , i.e., the map ϕ :ZG→Z
[
ζ
]
. An element of ZG, say x =

∑
g∈G xgg,

lies in the kernel ker (ϕ) if and only if
∑

g∈G xgϕ (g)= 0 in Z
[
ζ
]
. Therefore, the elements of the ideal

ker (ϕ) correspond precisely to all Z-linear relations among the nth roots of unity. For vanishing sums
of nth roots of unity, we have to look at elements x =

∑
g xgg ∈ ker (ϕ) with xg ≥ 0; the number of

non-zero coefficients xg is denoted by ε0 (x). In other words one looks at NG ∩ ker (ϕ), where NG
denotes the group semi-ring of G over N.

A vanishing sum α1 + · · · + αd = 0 is called minimal if no proper sub-sum is zero. Clearly, one
can always multiply a vanishing sum by a root of unity to get another vanishing sum; we say that the
latter is similar to the former, i.e., one can be obtained from the other by a rotation. For any natural
number n, ζn denotes a primitive nth root of unity in C.

In terms of roots of unity, a vanishing sum from the basic relations of the form

1 + ζpi + ζ
2
pi
+ · · · + ζ

pi−1
pi
= 0 1 ≤ i ≤ r (29)

is called a symmetric minimal elements in NG ∩ ker (ϕ). In general, there are vanishing minimal
sums which are not similar to those in Eq. (29). The latter are called asymmetric sums.

The following theorem due to Lam and Leung IV14 will help us prove our theorem pertaining
to vanishing sums of cosines (Theorem 2).

Theorem 1 [Lam and Leung, Theorem 4.8]. Let G be a cyclic group of order n= pa1
1 pa2

2 · · · p
ar
r ,

where p1 < p2 < · · · < pr are primes and let ϕ :ZG→Z
[
ζ
]

be as above, where ζ = ζn. For any minimal
element x ∈NG ∩ ker (ϕ), we have either (A) x is symmetric, or (B) r ≥ 3 and ε0 (x) ≥ p1 (p2 − 1)
+ p3 − p2 > p3.

We shall utilize this theorem to prove the following (recall that n = N + 1).

Theorem 2. Let n be a positive odd integer and k1, k2, . . ., kd be a set of integers such that
1 ≤ ki ≤ n − 1. Then

d∑
i=1

cos

(
kiπ

n

)
, 0 (30)

for any choice of ki’s if and only if d is odd and is smaller than the smallest divisor of n.

Proof. By Lemma 3, we only need to consider d odd. Below we first work with roots of unity
by writing the cosines in terms of the roots

d∑
i=1

cos

(
2kiπ

2n

)
= 2




d∑
i=1

ζ ki
2n + ζ

−ki
2n




. (31)

So we have now a sum over 2d roots of unity. We first prove that this sum is never zero if d < p2.
Since 2n= 2pa2

2 pa3
3 · · · p

ar
r with all the pi’s being odd, we are guaranteed (from Theorem IV) that

p1 (p2 − 1)+ p3 − p2 = p2 + p3 − 2 < 2p2; therefore 2d ≡ ε0 (x)< 2p2 and if there were vanishing sums
they would be of type (A), which are symmetric, i.e., sums of minimal relations. When d < p2, in
Eq. (31) there would be fewer than 2p2 points on the unit circle, all of which appear as complex
conjugate pairs. For the sum to be of type (A) and vanish, there should be a symmetric sum with a
prime p that vanishes. The corresponding roots are a subset of the original points that are a vanishing
sum of roots of ζp with the prime p ≥ p2 > d; therefore, it would involve a vanishing sum on more
than half of the points of the original 2d terms in Eq. (31). Hence there must be at least one complex
conjugate pair in the vanishing sum under consideration. But if there is one complex conjugate pair,
then all the roots should be complex conjugates as we can rotate any of the pth roots into one another.
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FIG. 2. Left: cos
(

k1π
N+1

)
+ cos

(
k2π
N+1

)
+ cos

(
k3π
N+1

)
= 0 is equivalent to the phasors adding to a vertical vector. The circles

shown are unit circles. Right: Vanishing sums of roots of unity imply vanishing sums of cosines on the upper half plane since
one can reflect any phasor without changing the cosine.

Since we have a vanishing sum of complex conjugate pairs but we allow only an odd number of terms,
there must be a real root. But we exclude the real roots (±1). Therefore we reach a contradiction and
the sum can never vanish.

Now we prove that the sum can be zero if d ≥ p2. It is sufficient to show that it vanishes for
d = p2 as for any odd d > p2 we can always pair up the 2 (p2 − d) cosines to cancel as we did in
the proof of Lemma 3. Suppose d = p2. Then a symmetric sum over the roots of unity that vanishes
implies that the sum over cosines vanishes as the cosines are the real part and geometrically one can
reflect the roots to the upper half plane (see Fig. 2). However, we need to exclude the possibility of
±1 as roots and show that the sum still vanishes. The number of symmetric sums will be 2n

p but only
2 of them have ±1 as roots. In the sum involving the symmetric sums we can exclude the ones that
have ±1 and still be left with vanishing symmetric sums. �

Corollary 2. The inverse of the Hückel matrix and hence its Green’s function in d dimensions
exists if and only if d is odd and is smaller than the smallest prime divisor of N + 1.

For d = 3, this lemma and Eq. (30) have the geometrical interpretation shown in Fig. 2. Moreover,
twice the left hand side of Eq. (30) is the expression for the energies of the Hückel matrix in d
dimensions.

V. THE PHYSICAL CONSEQUENCES OF THE INVERSE OF THE HÜCKEL MATRIX
AND THE ZEROES OF ITS GREEN’S FUNCTION

The Hückel formalism, in its physical and chemical context, is not, of course, restricted to a
linear chain. Various two- and three-dimensional connectivities have been probed in the 80 years of
its existence, to the immense benefit of practice and understanding in chemistry. But until recent time,
there has been scant interest in the Green’s function of the Hückel matrix and its inverse. Heilbronner
used the inverse of the Hückel Matrix to form an undervalued bridge between the resonance structure
of valence bond theory and molecular orbitals—thus bringing together two seemingly distinct, but
in fact related, approaches to the electronic structure of molecules.31 The graph theoretical context
has led people to investigate the inverse of the vertex adjacency matrix.10 In the work of Estrada, the
relationship between the Green’s function formalism and the inverse of the vertex adjacency matrix
of a graph is consistently utilized.8,9

In a field that has attracted much attention both experimentally and theoretically in the last
decade, the transmission of current across molecules, a striking phenomenon, quite nonclassical, is
observed. This is quantum interference, zero or low conductance when electrodes are attached to
specific sites across a molecule.5,21 Quantum interference occurs when the Green’s function, whose
absolute value squared is related to the current transmitted, vanishes. These are exactly the zeroes of
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Eq. (12). The inverse of the Hückel matrix has been directly related to this phenomenon in the work
of Markussen and Stadler.17 The chemical consequences of just these zeroes have been outlined in
recent work by us.24

The results we have obtained in this paper for the specific entries of the Green’s function have
been proven of great utility in describing the transmission of current through molecules. The Green’s
function expressions obtained in this paper also play an important role in designing new molec-
ular switches based on electrocyclic reactions, cycloadditions, and sigmatropic reactions in linear
polyenes.21,24 In particular in a paper on linear polyenes, we have used the results to derive specif-
ically the transmission across a chain and its exponential falloff.26 In the same paper, where it was
important to have the Green’s function elements for a cyclic polyene (annulene) with and without
bond alternation, expressions from the current paper and some based on similar procedures were
used. Two kinds of zero values of the Green’s function introduced in this paper, namely, easy zero
and hard zero, provide the bases for an important classification of quantum interference, and the
connection between these zeroes and the non-disjoint or disjoint nature of diradical molecules has
been clarified.25
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APPENDIX: FIRST PRINCIPLE DERIVATION FROM TRIGONOMETRICS

Proposition. The following sum has a closed form solution

−
1

N + 1

N∑
k=1

sin (rkω) sin (skω)
cos (kω)

= eiπ( r+s−1
2 ) (A1)

when r is even and s < r is odd. Otherwise, when s ≤ r it is zero. Moreover s > r are symmetric, i.e.,
G (r, s)=G (s, r).

1. Easy zeros: Same parity of s and r

Using sin (rkω) sin (skω)= 1
2 {cos [(r − s) kω] − cos [(r + s) kω]}, we can rewrite Eq. (7) as

G (r, s)=−
1

2 (N + 1)

N∑
k=1

{cos [(r − s) kω] − cos [(r + s) kω]}
cos (kω)

. (A2)

First let r �s = 2q; this implies that r and s have the same parity (i.e., oddness or evenness).
Therefore r + s is also even, and let it be r + s = 2q’ for some q′ ∈N. Eq. (A2) becomes

G (r, s)=−
1

2 (N + 1)

N∑
k=1

{
cos

[
2qkω

]
cos (kω)

−
cos

[
2q′kω

]
cos (kω)

}
. (A3)

We now show that each sum is zero. Let us first show
∑N

k=1
cos[2qkω]

cos(kω) = 0. Recall ω = π
N+1 and expand

the sum by adding the first to the last then the second to N − 1st, etc., to get
N∑

k=1

cos
[
2qkω

]
cos (kω)

=

(
cos

[
2qω

]
cos (ω)

+
cos

[
2qNω

]
cos (Nω)

)
+

(
cos

[
4qω

]
cos (2ω)

+
cos

[
2q (N − 1)ω

]
cos ((N − 1)ω)

)
(A4)

+ · · · +
*.
,

cos
[
2q N

2 ω
]

cos (ωN/2)
+

cos
[
2q

(
N
2 + 1

)
ω

]

cos
((

N
2 + 1

)
ω
) +/

-
.
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We now show that each of the parenthesis is identically zero. To do so we notice that each of the
parenthesis is of the form

cos
[
2qkω

]
cos (kω)

+
cos

[
2q (N − k + 1)ω

]
cos ((N − k + 1)ω)

, k = 1, 2, . . . ,
N
2

.

But cos((N − k + 1) π
N+1 )= cos(−k π

N+1 + π)=− cos(k π
N+1 )=− cos(kω) by the double angle formula

and evenness of the cosine. Moreover

cos
[
2q (N − k + 1)ω

]
= cos

[
2qπ − 2q

kπ
N + 1

]
= cos

[
−2q

kπ
N + 1

]

= cos

[
2q

kπ
N + 1

]
= cos (2qkω) .

Concluding that the numerators are equal but denominators differ in sign resulting in

cos
[
2qkω

]
cos (kω)

+
cos

[
2q (N − k + 1)ω

]
cos ((N − k + 1)ω)

=
cos

[
2qkω

]
cos (kω)

−
cos

[
2qkω

]
cos (kω)

= 0 .

The exact same argument with substitution q’ for q in Eq. (A4) proves that the second sum in Eq. (A3)
is zero. Together proving G (r, s)= 0 if r and s have the same parity. There are other zeros that are
harder to prove.

2. Harder zeros

Let us make the sum in Eq. (7) centered by letting m= k − N+1
2 , whereby

G (r, s)=−
1

N + 1

N−1
2∑

m=− N−1
2

sin
[
rω

(
m + N+1

2

)]
sin

[
sω

(
m + N+1

2

)]

cos
[
ω

(
m + N+1

2

)] ,

where ω = π
N+1 as before. Since cos[ω(m + N+1

2 )]=− sin (ωm) and sin x = 1
2i (e

ix − e−ix),

G (r, s)=−
iei(r+s)π/2

2 (N + 1)

N−1
2∑

m=− N−1
2

eiωm(r+s−1)

(
1 − e−2irω(m+ N+1

2 )
) (

1 − e−2isω(m+ N+1
2 )

)
1 − e−2iωm

=−
iei(r+s)π/2

2 (N + 1)

N−1
2∑

m=− N−1
2

eiωm(r+s−1)

[
1 − (−1)re−2irωm

] [
1 − (−1)se−2isωm

]

1 − e−2iωm
. (A5)

This equation is general and will be used later for nonzero sums as well.
Since we proved that if r and s have the same parity the sum vanishes, we prove the harder zeros

(see Eq. (9)) by letting r be odd and s even and enforcing s < r. We can let r = 2q �1 and s = 2p with
integers p and q satisfying 0 < p< q ≤N/2. Using these, Eq. (A5) becomes

G (r, s)=−
ei(p+q)π

2 (N + 1)

N−1
2∑

m=− N−1
2

ei2ωm(p+q−1)

[
1 + e−2i(2q−1)ωm

] [
1 − e−2i(2p)ωm

]

1 − e−2iωm
.

We now use the factorization 1−x2`

1−x = 1 + x + x2 + · · · + x2`−1 with x ≡ exp (−i2mω) to get rid of
the denominator

G (r, s)=−
(−1)p+q

2 (N + 1)

N−1
2∑

m=− N−1
2

{
e2iωm(p+q−1)

[
1 + e−2iωm(2q−1)

]

×
[
1 + e−2iωm + e−4iωm + · · · + e−2iωm(2p−1)

] }
.
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Multiplying the phase factor into the parenthesis inside the sum and substituting for ω, we have

G (r, s)=−
(−1)p+q

2 (N + 1)

N−1
2∑

m=− N−1
2

(
e2i(p+q−1) πm

N+1 + e−2i(q−p) πm
N+1

)
×

{
1 + e−2i πm

N+1 + e−4i πm
N+1 + · · · + e−2i(2p−1) πm

N+1
}

. (A6)

Comment: The pre-factor multiplying the sum can only be ±1
2(N+1) , determined by the values of p and

q: G (r, s) vanishes iff the sum does.
We expand the summand in Eq. (A6) to get

G (r, s)=−
(−1)p+q

2 (N + 1)

N−1
2∑

m=− N−1
2

{ [
e2i(p+q−1) πm

N+1 + e2i(p+q−2) πm
N+1 + · · · + e2i(q−p+1) πm

N+1 + e2i(q−p) πm
N+1

]

+
[
e−2i(q−p) πm

N+1 + e−2i(q−p+1) πm
N+1 + e−2i(q−p+2) πm

N+1 + · · · + e−2i(p+q−2) πm
N+1 + e−2i(p+q−1) πm

N+1
] }

=−
(−1)p+q

(N + 1)

N−1
2∑

m=− N−1
2

{
cos

[
2πm (q − p)

N + 1

]
+ cos

[
2πm (q − p + 1)

N + 1

]
+ · · ·

+ cos

[
2πm (p + q − 1)

N + 1

]}
, (A7)

where in the last equation, to get the cosines, we paired the first term inside the first brackets with
the last term inside the second brackets etc. and used the formula eix + e−ix = 2 cos x. The factor of 2
cancelled the overall pre-factor 1/2.

Comment: It is important to note that, since q > p, the exponents in the first bracket are all positive
and in the second bracket the exponents are all negative.

We can write a more succinct expression

G (r, s)=−
(−1)p+q

(N + 1)

2p−1∑
t=0




2

N−1
2∑

m= 1
2

cos

[
2πm (q − p + t)

N + 1

] 


, (A8)

where we used evenness of cosines, to let m run from 1/2, and switched the order of the sums. We
now prove that the sum inside braces is (−1)t . Let θ = 2π(q−p+t)

N+1 , n = m �1/2 and N ′ = N
2 − 1 to rewrite

the sum

2

N−1
2∑

m= 1
2

cos

[
2πm (q − p + t)

N + 1

]
≡ 2

N′∑
n=0

cos

[(
n +

1
2

)
θ

]

but cos
[(

n + 1
2

)
θ

]
= cos (nθ) cos

(
θ
2

)
− sin (nθ) sin

(
θ
2

)
and Ref. 1,

N′∑
n=0

cos (nθ)=
cos

(
N′θ

2

)
sin

[
θ
2 (N ′ + 1)

]

sin (θ/2)
, (A9)

N′∑
n=0

sin (nθ)=
sin

(
N′θ

2

)
sin

[
θ
2 (N ′ + 1)

]

sin (θ/2)
. (A10)
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Therefore
∑N′

n=1 cos
(
n + 1

2

)
θ =

∑N′
n=1

{
cos (nθ) cos

(
θ
2

)
− sin (nθ) sin

(
θ
2

)}
gives

2
N′∑

n=0

cos

(
n +

1
2

)
θ = 2




cos

(
θ

2

) cos
(

N′θ
2

)
sin

[
θ
2 (N ′ + 1)

]

sin (θ/2)
− sin

(
θ

2

) sin
(

N′θ
2

)
sin

[
θ
2 (N ′ + 1)

]

sin (θ/2)




= 2
sin

[
θ
2 (N ′ + 1)

]

sin (θ/2)

{
cos

(
N ′θ

2

)
cos

(
θ

2

)
− sin

(
N ′θ

2

)
sin

(
θ

2

)}

= 2
sin

[
θ
2 (N ′ + 1)

]

sin (θ/2)

{
cos

(
θ

2
(
N ′ + 1

))}
=

sin [(N ′ + 1) θ]
sin (θ/2)

=
sin [Nθ/2]
sin (θ/2)

.

However sin [Nθ/2]= sin
[

(N+1)θ
2 − θ

2

]
= sin

(
(N+1)θ

2

)
cos θ

2 − cos
(

(N+1)θ
2

)
sin θ

2 . But sin
(

(N+1)θ
2

)
= 0, leaving us with

sin [Nθ/2]
sin (θ/2)

=
sin

[
πN(q−p+t)

N+1

]

sin
(
π(q−p+t)

N+1

) =− cos

(
(N + 1) θ

2

)
=− cos (π (q − p + t))=−(−1)q−p+t . (A11)

Putting this back into the sum (Eq. (A8))

G (r, s)=
(−1)p+q

(N + 1)

2p−1∑
t=0

{
(−1)q−p+t

}

=
(−1)2q

(N + 1)

2p−1∑
t=0

(−1)t =
1

(N + 1)

2p−1∑
t=0

(−1)t ,

zero comes out because we are summing alternating +1’s and�1’s an even number of times. This com-
pletes the proof of the harder zeros. Note that we used q > p. For example if q = p, then cos π (q − p + t)
would be 1 for t = 0 and the sum would give a 2p �1 on that term alone.

Recall r+1
2 = q and s

2 = p with integers p and q satisfying 0 < p< q ≤N/2; for this choice

G (r, s)= 0.

3. Nonzero entries: ±1’s in the G

It remains to show that when r is even and s is odd, G (r, s) is ±1 as shown in Eq. (9). Let
r = 2q and s = 2p �1 with p ≤ q (note that we allow for equality as well). Using Eq. (A5) and previous
techniques, we have

G (r, s)=−
iei(2(p+q)−1)π/2

2 (N + 1)

N−1
2∑

m=− N−1
2

ei2ωm(p+q−1)

[
1 − e−2i(2q)ωm

] [
1 + e−2i(2p−1)ωm

]

1 − e−2iωm

=−
iei(2(p+q)−1)π/2

2 (N + 1)

N−1
2∑

m=− N−1
2

(
e2iωm(p+q−1) + e−2iωm(p−q)

)
×

{
1 + e−2iωm + e−4iωm + · · · + e−2i(2q−1)ωm

}
.

Once again we multiply the parenthesis into the braces to get (using iei(2(p+q)−1)π/2 = ei(p+q)π),

G (r, s)=−
ei(p+q)π

2 (N + 1)

N−1
2∑

m=− N−1
2

{ [
e2iωm(p+q−1) + e2iωm(p+q−2) + · · · + e2iωm(p−q)

]
(A12)

+
[
e−2iωm(p−q) + e−2iωm(p−q+1) + · · · + e−2iωm(p+q−1)

] }
.

Comment: Eq. (A12) looks very similar to Eq. (A7); however, it has a key difference. Since
q ≥ p, in either one of the brackets there will be a term with exponent zero. For example, if one looks
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at the first brackets the first term is e2iωm(p+q−1), which clearly has a positive exponent; however, the
last term e2iωm(p−q) has either zero or negative exponent. If it is negative, then a term preceding it
must have had zero exponent. Therefore, the sum for some choice of r and s can look like

Gexample (r, s)=−
ei(p+q)π

2 (N + 1)

N−1
2∑

m=− N−1
2

{ [
e2iωm(p+q−1) + · · · + e2iωm + 1 + e−2iωm + · · · + e2iωm(p−q)

]

+
[
e−2iωm(p−q) + e2iωm + 1 + e−2iωm + · · · + e−2iωm(p+q−1)

] }
. (A13)

We can pair the terms to the left (right) of the 1 in the first bracket with those to the right (left) of the 1
in the right bracket to get the cosines as before. It is clear that the sum over 2 contributes a 2 (N − 1).
We now show that the sum over the cosines contributes a 4, which together makes 2 (N + 1) and
cancels the denominator in the pre-factor.

For any p and q, we can find a t0 = q − p ≥ 0 that makes the exponent zero. In the first bracket,
there are q �p terms to its left and there are 2q− (q − p + 1)= p+q−1 terms to its right (for a total of
2q terms). We can pair the terms to its left with the corresponding terms in the second bracket (now
to the right of the 1) to get cosines and similarly pair terms to its right to get cosines. Then, we can
break the sum in the foregoing equation to the sum over cosines obtained from terms to the left of t0

in the first bracket, the sum over terms to its right and add a 2 for the term itself. Namely,

G (r, s)=−
ei(p+q)π

2 (N + 1)

N−1
2∑

m=− N−1
2




2
q−p∑
t=1

cos [2ωmt] + 2 + 2
p+q−1∑

t=1

cos [2ωmt]



(A14)

=−
ei(p+q)π

(N + 1)

N−1
2∑

m=− N−1
2




q−p∑
t=1

cos [2ωmt] +
p+q−1∑

t=1

cos [2ωmt] + 1



,

where we cancelled the overall pre-factor of a 1/2. Let us evaluate each of the sums separately
(switching order of summation, changing variables as before)

N−1
2∑

m=− N−1
2

cos [2ωmt]= 2

N
2 −1∑
n=0

cos

[
2ωt

(
n +

1
2

)]

= 2 cos (ωt)

N
2 −1∑
n=0

cos (2ωtn) − 2 sin (ωt)

N
2 −1∑
n=0

sin (2ωtn) .

The sum over cosines is evaluated using Eqs. (A9) and (A10),

N
2 −1∑
n=0

cos (2ωtn)=
cos

((
N
2 − 1

)
ωt

)
sin [ωt (N/2)]

sin (ωt)

N
2 −1∑
n=0

sin (2ωtn)=
sin

((
N
2 − 1

)
ωt

)
sin [ωt (N/2)]

sin (ωt)
,

which together give

N−1
2∑

m=− N−1
2

cos [2ωmt]= 2
sin

[(
N
2

)
ωt

]

sin (ωt)

{
cos

((
N
2
− 1

)
ωt

)
cos (ωt) − sin

((
N
2
− 1

)
ωt

)
sin (ωt)

}

= 2
sin

[(
N
2

)
ωt

]

sin (ωt)

{
cos

[(
N
2

)
ωt

]}
=

sin (Nωt)
sin (ωt)

=
sin

(
πNt
N+1

)
sin

(
πt

N+1

) .
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We calculated this ratio in Eq. (A11) so we have

sin
(
πNt
N+1

)
sin

(
πt

N+1

) =−(−1)t .

Using this we can evaluate Eq. (A14),

G (r, s)=−
ei(p+q)π

(N + 1)



−

q−p∑
t=1

(−1)t −

p+q−1∑
t=1

(−1)t +

N−1
2∑

m=− N−1
2

1




.

If q �p is even then q �p = 2k for some k and p + q − 1= 2 (k + p) − 1, which is odd. Also if q �p
= 2k �1, then p+ q− 1= 2 (p + k − 1), which is even. In either case one of the sums vanishes and the
other evaluates to be �1. Therefore,

G (r, s)=−
ei(p+q)π

(N + 1)




1 +

N−1
2∑

m=− N−1
2

1



=−

ei(p+q)π

(N + 1)
(N + 1)=−ei(p+q)π . (A15)

So we predict that if p + q is odd then G (r, s)=+1 and if p + q is even then G (r, s)=−1. What
does this mean for r and s? Let us cover all of the cases one by one. Recall that r is even and s is odd
and q + p= r

2 +
s+1

2 .

� p + q is even, G (r, s)=−1, and q is even. This means that p is even. These imply that r and
s + 1 are multiples of 4. Looking at G, we see that these entries indeed are �1.

� p + q is even, G (r, s)=−1, and q is odd. This means p is odd. These imply that r and s + 1 are
multiples of 2 but not 4. Looking at G, we see that the rest of the entries that are �1 have been
covered.

� p + q is odd, G (r, s)=+1, and q is even. This means p is odd. These imply that r is a multiple
of 4 but s + 1 is not (though of course even). This covers some of the +1’s in G.

� Lastly, p + q is odd, G (r, s)=+1, and q is odd. This means p is even. These imply that r is
not a multiple of 4 (though of course even), yet s + 1 is a multiple of 4. These cover the rest
of +1’s seen G.

The final result Eq. (A15) can be expressed in terms of r and s as

G (r, s)=−eiπ( r+s+1
2 ) = eiπ( r+s−1

2 ). (A16)

This completes our proof.

Remark 4. All the equations above for G (r, s) were checked numerically.
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