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ABSTRACT: Following the work of L. C. Allen, this work begins by relating the central
chemical concept of electronegativity with the average binding energy of electrons in a
system. The average electron binding energy, χ,̅ is in principle accessible from experiment,
through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ ̅ has
a rigorous and understandable connection to the total energy. That connection defines a
new kind of energy decomposition scheme. The changing total energy in a reaction has
three primary contributions to it: the average electron binding energy, the nuclear−nuclear
repulsion, and multielectron interactions. This partitioning allows one to gain insight into
the predominant factors behind a particular energetic preference. We can conclude
whether an energy change in a transformation is favored or resisted by collective changes to
the binding energy of electrons, the movement of nuclei, or multielectron interactions. For
example, in the classical formation of H2 from atoms, orbital interactions dominate nearly
canceling nuclear−nuclear repulsion and two-electron interactions. While in electron
attachment to an H atom, the multielectron interactions drive the reaction. Looking at the
balance of average electron binding energy, multielectron, and nuclear−nuclear contributions one can judge when more
traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.

■ INTRODUCTION

Calculating reliably, and understanding, electron−electron
interactions has been a continuing challenge for quantum
chemistry. In this and subsequent papers we propose a different
perspective on this essential component of the energy of a
molecule, one offering up the possibility (just that, not
certainty) of estimating these from experimental knowledge
of spectroscopic data, heats of reaction, and molecular
structure. Central to this prospect is a new energy partitioning,
with its linchpin being a revived definition of electronegativity
as the average electron binding energy.
Electronegativity. Since the dawn of modern chemistry,

“electronegativity” has been at its very heart. The story began
with Linus Pauling, who defined electronegativity as “The
power of an atom to attract electrons to itself” and proceeded
to quantify it using bond dissociation energies.1 The utility of
the concept established, this definition was followed by many
others,2−17 maybe most notably that of Mulliken, who defined
electronegativity as the average between the ionization potential
and the electron affinity,2 and Parr et al., who introduced a
related density functional theory (DFT)-based definition which
equates electronegativity with the negative of the chemical
potential,18 in turn approximated by the Mulliken electro-
negativity.
In this and subsequent papers, we build on the idea of Lee

Allen, who defined the concept of electronegativity as the
average binding energy of valence electrons in ground-state
atoms, which he termed configuration energies (CEs).10,19−21

The great advantage of Allen’s approach is that the CEs are, in

principle, obtainable from experiment, for instance from
photoelectron spectroscopy.
Electronegativity has traditionally been attributed to

individual atoms and used in understanding the interactions
of such atoms.22 Here the concept is extended, and we will
investigate the utility of explicitly considering the average
binding energy of all electrons, χ,̅ in an atomic, molecular, or
extended assembly of atoms. In what follows, ways of attaining
this quantity, both in theory and from experiment, will be
discussed.
The symbol χ ̅ (average electron binding energy) connects to

traditional electronegativity, and we will show that χ ̅ indeed
correlates with traditional atomic electronegativity scales, with
certain understandable differences. Electronegativity is in the
minds of most chemists inherently related to charge transfer
and bond dipoles. Yet, quite often the concept is invoked to
rationalize energetic preferences, i.e., observed kinetic or
thermodynamic tendencies. One of the objectives of this
paper is to show how and when we can know when traditional
atomic electronegativity arguments can be justifiably invoked as
a rationalization for chemical regularity in energy and when it
cannot. The primary utility of the χ ̅ definition, as we shall see, is
that it allows for the construction of a different energy
partitioning and an approach to experimental estimates of
electron−electron interactions. We stress that in what follows,
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what is most important is the change in χ,̅ not its absolute
value.

■ DEFINITION OF χ ̅
The average binding energy of a collection of electrons (χ)̅ is a
defined property of any assembly of electrons in atoms
molecules, or extended materials:

χ
ε

̅ =
∑

n
i i

(1a)

where εi is the energy corresponding to the vertical (Franck−
Condon) emission of one electron i into vacuum, with zero
kinetic energy, and n is the total number of electrons. For
extended structures in one-, two-, or three-dimensions, χ ̅ can be
obtained from the density of states (DOS) as

∫
∫

χ
ε ε

ε
̅ =

×
ε

ε
−∞

−∞

dE

dE

DOS( )

DOS( )

f

f

(1b)

where εf is the Fermi energy. In an insulator, integration to εf
and to the energy of the highest electronic level will provide
identical values of χ.̅ This is because there are no levels within
the band gap.
Our average binding energy definition for extended

structures can be related to the theoretical framework of
moments of the electron distribution, so productively used for
describing the geometrical factors determining solid-state
structure by Pettifor, Burdett, and Lee.23−26 The average
binding energy, χ,̅ is the first moment of the energy distribution
of a material integrated to the Fermi level.
A related expression for the partial DOS has been found

useful for determining the average position of diverse valence
states in extended solids and for estimating covalence of
chemical bonds.27,28

All-Electron vs Valence-Core Partitioning. With our
definition (eqs 1a and 1b) in hand we can, if we wish, choose to
estimate χ ̅ for any subset of electrons, such as “valence-only”
(as Allen did).10 If we do so, however, we invite trouble, for two
reasons: (1) the division between “core” and “valence” is not
always obvious, especially as one moves down the periodic
table, and (2) any such division of core and valence quantities
serves to disconnect χ ̅ from its rigorous relation to the total
energy, as will become clear. Nevertheless, in practical analyses
of chemistry, in seeking rationales, it might sometimes prove
instructive to focus on a predefined valence set. Computational
limitations, such as the utilization of pseudopotentials, or a
priori knowledge of poorer descriptions of lower lying levels
might also warrant a valence-only approach. A concrete
example of how to obtain χ ̅ for an atom and a molecule is
given in the following section.

■ OBTAINING χ ̅
Whereas electrons can be highly correlated in a multiple-
electron system and do not always behave as if they were
noninteracting, they nonetheless have an average binding
energy, which is characteristic of the system. The challenge lies
with how to estimate this value as accurately as possible. By
definition, the expression of χ ̅ only pertains to a “single particle
picture” insofar as one can remove single electrons from any
system and measure the energy required to do so. In principle,
the degree of entanglement (or correlation) of the electrons,
which make up the system, does not matter. The definition is

general in the sense that it can be applied to any electronic state
(ground or excited). For example, whereas χ ̅ for the carbon
atom near 0 K may be attributed to the 2p2 (3P0) ground-state
configuration, elevated temperatures and the consideration of
spin−orbit coupling may merit a weighted 2p2 (3P/1D/1S) or
2s12p3 (5S/3S/3D/1D/3P/1P) average instead.
Although both the discrete energy levels of atomic and

molecular systems and the effectively continuous densities of
states of condensed matter are, in principle, obtainable from
experiment, by, for instance, photoelectron (valence) and X-ray
(core) spectroscopy, several practical caveats exist.
When estimating χ ̅ from a photoelectron spectrum it is

necessary either to assume vertical (no nuclear movement)
ionization processes, extrapolate these limiting values, or
(somehow) obtain a measure of the resulting nuclear relaxation.
In a photoelectron spectrum “shake-up” and “shake-down”

satellite bands can arise in cases where ionization occurs from
strongly coupled states, typically in the inner-valence or near-
core region. Such processes do not show a direct one-to-one
correspondence with a molecular orbital (one-particle hole)
picture and have been attributed to a “breakdown of the
molecular orbital picture”.29−31 In such more complicated
ionization processes, one considers the energy difference
between an initial state and a superposition of different excited
configurations of the resulting cation.
A further complication is that the intensity of different

experimental lines may vary with the incident photon (or
electron) energy. This effect is diminished for sufficiently high
energies; nevertheless accurate interpretation of complex
systems may require knowledge of both transition amplitudes
and ionization cross sections. In order to assign and interpret
more challenging cases it is therefore often necessary to
simulate photoelectron spectra using various modern quantum
mechanical calculations, each with its own inherent approx-
imations.32,33

Fortunately, and as we shall discuss later when addressing the
proposed energy decomposition analysis and in subsequent
papers, absolute values of χ ̅ are not what matters in chemistry.
In the analysis of Δχ ̅ over a reaction many ambiguities relating
to the above caveats are expected to diminish due to error
cancellation.
There are several technical approaches to estimating χ ̅

theoretically. Some of these will be addressed below. The
simplest theoretical approximation to χ ̅ is arguably the average
of the energies of all occupied Hartree−Fock molecular
orbitals, which by Koopmans’ theorem approximate single
electron vertical ionization potentials.34

An Example, Methane. If we limit ourselves to the valence
electrons, then the value of χ ̅ for the ground-state carbon atom
calculates (using experimental ionization potentials) as 1/
4(2(−18.10) + 2(−11.26)) = −14.7 eV e−1. If we were to
include the 1s core electrons, which are bound by ∼284.6 eV,
we end up with the all-electron χ ̅ value of −104.7 eV e−1. The
value for the hydrogen atom is −13.6 eV e−1.21

How do we obtain χ ̅ for methane, CH4? The energy levels of
methane have been determined by X-ray photoelectron
spectroscopy as −23.1 eV (a1) and −13.6 eV (t2).

35 As will
be addressed later, similar energies can quickly be obtained
computationally using, for instance, long-range corrected
density functional theory (LC-DFT), where the orbital energies
are calculated as −23.4 and −14.3 eV, respectively. The t2 levels
are triply degenerate. To obtain χ ̅ for methane, we simply take
the average of these values, χ(̅CH4) = 1/8(2(−23.1) + 6(−13.6))
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= −16.0 eV e−1. If we were to include the 1s core electrons of
methane, which are bound by ∼283.5 eV,36 we end up with the
all-electron χ ̅ value of −69.5 eV e−1.
If we consider the formation of CH4 from C and H atoms,

i.e., the C + 4H → CH4 reaction, we can note that both −16.0
eV e−1 (the valence χ ̅ value for CH4) and −69.5 eV e−1 (the all
electron χ ̅ value for CH4) are lower than:

χ χ̅ + ̅ = − −(4 4 )/8 14.1 eV e (valence only)C H
1

and

χ χ̅ + ̅ = − ‐−(6 4 )/10 68.2 eV e (all electron)C H
1

The differences in χ ̅ over the C + 4H → CH4 reaction (i.e.,
Δχ)̅ are similar: −1.8 and −1.2 eV e−1 for valence-only and all-
electron, respectively. This is to illustrate that traditional
electronegativity values (such as Allen’s) and average all-
electron binding energies often provide the same general trends
over a reaction and that the inclusion of core electrons does not
“marginalize” the importance of valence orbitals in a relative
analysis. Instead, the inclusion of lower levels simply offers a
more complete description; as we will see, it is needed for the
new energy partitioning we introduce. We will return to the
relationship between χ ̅ of molecules and their constituent
atoms; clearly Δχ ̅ has something to do with the energy change
in a reaction.
Comparison with Traditional Electronegativities. Do

the average electron binding energies correlate with time-
honored measures of electronegativity, for instance Pauling’s
values? Figure 1 shows the relation for the first four periods.
The correlation is clearly there, but with one important
difference. By the χ ̅ definition, heavier elements will naturally
attain larger absolute values of χ,̅ simply because the definition
includes the cores, i.e., the binding of a larger number of
electrons. χ ̅ values correlate linearly with normal atomic
electronegativity scales (we show a correlation with Pauling χ,
but similar ones are obtained with other scales) only along each
period, but not down the periodic table. We note that, however,
the trend of increasing electronegativity down the periodic
table, where each atom of necessity attracts more electrons, is
from a certain perspective in accord with Pauling’s original
definition, as quoted above.
It is Δχ,̅ i.e., the change in average electron binding energy

that is important in this analysis, not absolute values of χ.̅ If one
wishes to maintain a connection to more traditional electro-
negativity values, one can estimate Δχ ̅ using a valence-only
approach, i.e., using the Allen scale of electronegativity, which
correlates linearly with Pauling’s values. As we saw in the CH4

example, such valence-only values of Δχ ̅ will be similar to Δχ ̅
estimated with an all-electron approach and, in our experience,
lead to the same general conclusions. Because energies of lower
levels can, in fact, shift in a reaction, we nevertheless
recommend the use of all-electron χ ̅ for a more rigorous
connection to the total energy.
We understand that the all-electron electronegativities are

unfamiliar and seem to run counter to chemistry’s fruitful
concentration on the valence electrons. We beg the reader’s
patience; there is a utility to this definition that will reveal itself
below.

■ χ ̅ IN ATOMS, MOLECULES, AND EXTENDED
SYSTEMS

A selection of average electron binding energies is shown in
Figure 2, ranging from atoms to molecules and condensed
matter. For the atoms, χ ̅ increases in absolute magnitude as one
moves in a given period to the right in the periodic table. This
is a familiar trend that is also seen with any other definition of
electronegativity; we noted the correlation with Pauling values
above. For molecules, the more electronegative atoms a
molecule contains, the lower (larger in magnitude) the χ ̅ is.
Hexane, C6H14, has, for example, a higher value of χ ̅ than
caproic acid, C6H12O2. We include graphene, with its calculated
χ ̅ of −16.2 eV e−1 (valence orbitals only), to illustrate that it can
be calculated, just as for a discrete molecule.
After showing examples of how the average electron binding

energy may be obtained in a range of cases, we can begin to ask
to what degree can changes in χ ̅ be related to reactivity,
structure, or charge transfer? A careful analysis of the energy
change in a chemical transformation is our way into answering
this question.

Figure 1. Comparison of χ ̅ (from LC-DFT) with Pauling electro-
negativity for the four first periods.37 Values for He, Ne, Ar, and Kr are
from ref 38. The χ ̅ values for H and He are, of course, not zero; they
just appear small in value on the χ ̅ scale. The lines are linear regression
lines for the elements in a period, with a separate line for Zn−Kr.
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■ RELATING χ ̅ TO THE TOTAL ENERGY
The idea that orbitals (and their energies) govern chemistry is
thoroughly instilled in most chemists today. Important tools,
such as Walsh diagrams, and the great success story of frontier
molecular orbital theory support an intuitive connection
between orbitals and the total energy. Theoreticians have also
pointed out several approximate relations of the summed
orbital energies with the total energy.39−41

In the most general sense, when one ignores rotational,
vibrational, and translational contributions, the total energy (E)
of any system can be related to χ ̅ as follows:

χ ω= ̅ + +E n VNN (2)

where nχ ̅ is the summed binding energy of all electrons
(obtained by some procedure) and VNN is the nuclear−nuclear
repulsion energy for a given geometry. The way in which ω
represents multielectron interactions will be discussed in detail
below. Specific challenges in estimating VNN for an extended
system will be addressed in future work. In the remainder of
this paper we address only atomic and molecular systems.
In Wave Mechanics. Assuming the Born−Oppenheimer

approximation, the Hamiltonian operator for any molecular
system can be written as follows:

where n and M are the number of electrons and nuclei,
respectively, the first term describes the kinetic energy of

electrons, the second the electron−nuclear attraction, the third
the electron−electron repulsion, and the forth the nuclear−
nuclear repulsion. Within various independent particle
approximations to the solutions of the wave function and
energies of this general Hamiltonian, it is possible to identify
the terms of eq 2 more specifically. Consider, for instance, the
familiar Hartree−Fock energy expression for the total energy:

∑ ∑ ∑ϕ ϕ= − ∇ − + − +
= =

E
Z
r

J K V1
2

1
2

(2 )
i

n

i i
A

M
A

iA
i

ij
ij ijHF

1

2

1
NN

(4)

where ϕi is the spin−orbital of electron i, and Jij and Kij are the
matrix elements of the Coulomb and exchange operators,
respectively.34 This expression can be rewritten as

∑ ∑ε= + − −
= <

E V J K
1
2

(2 )
i

n

i
i j

ij ijHF
1

NN
(5)

where εi is the eigenvalue of the ith molecular orbital:

∑ ∑ε ϕ ϕ= − ∇ − + −
= <

Z
r

J K
1
2

(2 )i i i
A

M
A

Ai
i

i j
ij ij

2

1 (6)

As previously mentioned, one approximation to the average
electron binding energy is just the sum of the Hartree−Fock
eigenvalues, divided by the number of electrons, n:

χ
ε

̅ =
∑

n
i i

HF (7)

Note that χ ̅ contains electron−nuclear attraction and
electron−electron repulsion terms, the latter through the
Coulomb and exchange integrals (in HF theory). The total
energy E can then be expressed in terms of this average orbital
energy, as in eq 8:

where nχH̅F is the sum of all one-electron orbital energies. In
this framework, ω is an expression of multiple electron
interactions, expressed in terms of the same Coulomb and
exchange operators that enter χH̅F. Importantly, ω is negative, a
point to which we will return.
The Hartree−Fock definition of χ ̅ in eq 7 can be generalized

to wave functions that are beyond the mean-field approx-
imation, for instance, that of the complete-active-space self-
consistent-field (CASSCF) method. Since occupation numbers
in active orbitals in such correlated wave functions are
fractional, eq 7 can be generalized as:

χ
ε

̅ =
∑

∑
c

n cMR
i i i

i i (9)

where i now denotes the sum over all optimized orbitals, ci is
the occupation number of each orbital, εi is the energy of each
orbital, and n is the total number of electrons.
For a discussion on how to extract χ ̅ from localized orbitals,

and limitations in the process, see the Supporting Information.
In Density Functional Theory. From a practical stand-

point is often advisable to forego expensive wave mechanical
calculations in favor of DFT. Whereas there is much debate on
the meaning of molecular Kohn−Sham (KS) orbitals obtained

Figure 2. (A) Experimental χ ̅ for the valence electrons of first and
second period atoms are taken from ref 21. (B) χ ̅ calculated for
selected molecules. Values where all electrons are considered are given
within brackets. (C) χ ̅ estimated for the valence bands of graphene.
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with DFT, they nevertheless produce orbital energies and
reasonable band structures, which are often in better agreement
with experiment than those obtained with Hartree−Fock
calculations.42,43 Reasons for the success of DFT orbital
energies have been extensively discussed.44−50 Within DFT,
several technical approaches can be taken to approximate more
accurate single electron binding energies. Maybe the most
straightforward approach currently is to compute orbital
energies using suitable range-separated DFT functionals,42,51,52

which limit the self-interaction error inherent in DFT by
compensating with exact Hartree−Fock exchange at longer
distances. First ionization potentials can also be combined with
excited-state calculations via TD-DFT to yield good estimates.
Statistical averaging of model orbital potentials (SAOP) is
another possibility.45,46

The interpretation of E is similar in Kohn−Sham density
functional theory, where the total energy expression can be
written such that,

where Vee(ρ) is the classical electron−electron Coulomb
repulsion energy, EXC is the exchange−correlation energy,
ρ(r) is the electron density, and the last term is the exchange−
correlation potential.
Note that when the energy is expressed in this manner it

becomes possible to decompose ω further, by treating the
classical electron−electron Coulomb repulsion Vee(ρ) sepa-
rately. In fact, experimental determination of the electron
density ρ(r), including bonding valence regions, is becoming
increasingly realistic with modern synchrotron radiation
facilities.53,54 With the electron density in hand, the classical
electron−electron Coulomb repulsion energy, Vee(ρ), can be
calculated, given sufficiently accurate data.
Having established the connection between the three key

terms χ,̅ VNN and ω, in relation to the total energy, we now
proceed to discuss how these terms change over the course of a
reaction.

■ A NEW ENERGY DECOMPOSITION ANALYSIS

One wants to reason through, in chemistry and in physics, the
origins or sources of change in the total energy ΔE. People
have used bond energies or Madelung energies coupled with
Born−Haber cycles to make sense of ΔE values, productively
so. A variety of so-called “energy decomposition analyses”, or
EDAs, have also been devised. Because of an inherent freedom
in how the total energy can be decomposed given an electronic
wave function, these are uniquely defined, but are in one way or
another, inherently arbitrary in construction. Examples include
schemes of Kitaura−Morokuma,55 Ziegler−Rauk,56 Mayer,57

and Frenking and co-workers,58,59 in addition to a number of
others.60−78

Our definition of an average binding energy leads us to a
different perspective, one that allows for partitioning of changes
to the total energy on the basis of experimentally accessible
quantities, often without explicit knowledge of the electronic
wave function. There is no claim here that our partitioning into
Δχ,̅ ΔVNN, and Δω is “better”; we will see whether the
perspective it provides offers chemical insight.
Understanding ΔE. How can we relate the change in

average binding energy of electrons, Δχ,̅ to ΔE? First, in

approaching ΔE experimentally, one needs to consider the
conditions for measurement, which include thermodynamic
functions such as the temperature, pressure, and entropy. What
ultimately determines the outcome of a chemical event is the
Gibbs energy change, ΔG. And it is ΔG (or the Enthalpy, ΔH),
which is experimentally measured and compiled in databases,
such as the NIST WebBook. Our expression is not for ΔG, but
for ΔE. The way ΔE can be estimated from measured changes
to ΔG or ΔH is given in the Supporting Information.
Within the Born−Oppenheimer approximation, we can then

write the relation:

χ ωΔ = ̅ + Δ + Δ + ΔE n V ENN thermal (11)

Alternatively, the energy change per electron may be written:

χ ωΔ = Δ ̅ +
Δ

+ Δ +
ΔE

n
V
n n

E
n

NN thermal
(12)

where ΔEthermal/n sums the changes in rotational, vibrational,
and translational contributions to the total energy, over the
course of a reaction. These can be accessed from vibrational
spectroscopy.

■ FORMING H2: THE SIMPLEST REACTION
The chemical bond is central to understanding chemistry, and
we turn first to the analysis of a familiar example. The
formation of H2 from atomic hydrogen is commonly described
simply either by a Heitler−London (VB) coupling of two H
atoms, or, in molecular orbital terms, by the constructive
interference of two hydrogen 1s states, producing a bonding σ-
state (Figure 3). Of course, one moves beyond these simplistic

starting points in ways familiar to the community, to obtain
good wave functions describing observable properties of the
molecule or ion. In all of the following examples we will side-
step the complexities of quantum mechanical calculations and
proceed solely using accurate experimental data.
With knowledge of the experimental heat of formation

(+2.259 eV) and ionization potential (−13.598 eV) of the
hydrogen atom and the ionization potential (−15.426 eV),
bond distance (0.7414 Å) and the fundamental stretching
frequency of molecular hydrogen (4401.2 cm−1), we can
describe the elementary reaction of H2 formation from two
hydrogen atoms (Figure 3). In order to allow for meaningful
comparison between systems of different size, in the examples
that follow, it becomes useful to discuss energies with the aid of
eq 12, i.e., energy per electron. As such Δω/n and ΔVNN/n
express energy change over a reaction in the same units as Δχ,̅
namely in eV e−1.
Because the bound state of H2 lies lower in energy than the

atomic state, Δχ ̅ for this reaction is −15.426 − (−13.598) =
−1.83 eV e−1. If this average value is multiplied by the total

Figure 3. Lowering of electron binding energies, or the stabilization of
orbitals, dominates the formation of H2 from atomic hydrogen. All
energies are calculated from experimental values provided by the NIST
Chemistry WebBook and are given in electronvolt per electron (eV
e−1), except for ΔE, which is given in electronvolt (eV).
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number of electrons, nΔχ ̅ = 2(−1.83) = −3.66 eV, we get a
value reasonably close to the enthalpy change of the reaction,
−4.52 eV.
What about the other terms, ΔVNN/n, Δω/n, and ΔEthermal in

this reaction? A large and positive value of ΔVNN/n = +9.71 eV
e−1 arises, due to the increased nuclear−nuclear repulsion
associated with bond formation. ΔEthermal is small, and we can
quickly approximate it from the harmonic vibrational energy at
0 K, ΔEZPE = +0.27 eV. Assuming knowledge of all other terms
(ΔE, Δχ, ΔVNN, and ΔEthermal), Δω/n is straightforwardly
obtained from eq 12. Note that this estimate of an electron−
electron interaction is based entirely on experimental
observables. For the 2H → H2 reaction Δω/n equals −10.29
eV e−1, which largely compensates the repulsive ΔVNN/n
energy. As will be seen in general when Δω/n and ΔVNN/n
terms are both large compared to Δχ,̅ the two will largely
cancel each other. How can they cancel when in both of them
there is repulsion (electron−electron and nuclear−nuclear,
respectively)?

■ INTERPRETATION AND USE OF ΔVNN AND Δω
The ω is so important in some reactions, and its definition in
our work is an unfamiliar one. So it is worthwhile to find still
other words to express the way this multielectron interaction
term behaves. It is crucial to realize that ω, as defined in eqs 8
and 10, contains the negative of the electron−electron
repulsion and the positive exchange and correlation energy.
This “reversal” of sign of the electron−electron repulsion when
it enters ω is a consequence of expressing the total energy as a
function of χ ̅ in eq 2 and is necessary to avoid “double
counting” the electron−electron interactions. Thus, when Δω/
n is more negative, electron−electron repulsion is increased,
and vice versa. In other words, when the Δω/n term is large
and negative, the electron−electron repulsions are more
positive (greater) in the molecule, but Δω contains the
negative of these repulsions. The hydrogen formation discussed
above is only one pertinent example of this.
In general, we can consider the process of any two atoms

being brought closer together. As a consequence of increased
nuclear−nuclear repulsion, ΔVNN/n, electrons rearrange to
shield the repulsion of the two approaching nuclei. This
rearrangement on average forces the electrons closer in-
between the nuclei, where they experience a stronger
electron−nuclear attraction, which is stabilizing and internal-
ized in Δχ ̅. The necessary rearrangement of electrons
simultaneously increases electron−electron interactions, which
are destabilizing overall. In Δω/n however, this quantity
appears with the reversed sign. As such, Δω/n is a
quantification of changing electron−electron interactions.
These include the classical electron−electron repulsion,
exchange interactions (which equal zero in the case of H2, as
its two electrons are of opposite spin), and correlation effects.
The above arguments are couched in terms of potentials; of
course the virial theorem allows a parallel analysis in terms of
kinetic energies.
The nuclear repulsion energy, VNN/n, is a direct consequence

of molecular structure. In the course of a reaction or physical
transformation ΔVNN/n can be large, compared to changes in
Δχ.̅ The magnitude of ΔVNN/n is especially sizable in the
formation of chemical bonds, and multiple examples of this will
be given in the second paper of this series. By itself ΔVNN/n
offers one way of quantifying geometric change. For instance, if
one considers two geometric conformers, ΔVNN/n calculated

between them becomes one nonelectronic expression of their
relative compactness. For transition states it is commonplace to
classify competing geometries as either “loose” or “tight”,
depending upon arbitrary bond lengths and angles. ΔVNN/n
offers a straightforward relative quantification of how “loose” or
“tight” each conformation is.
An alternative to ΔVNN/n and Δω/n might be their sum,

Δ(VNN + ω)/n, which describes how well changing nuclear−
nuclear repulsions are screened by changing multielectron
interactions. Δ(VNN + ω)/n is that part of ΔE that is not Δχ ̅
controlled. Such a simpler compact presentation might be
advantageous if the sole focus of an energy analysis were Δχ ̅ (or
orbitals). One other instructive quantity is the ratio of Δχ ̅
contributions to the sum of the absolute values of Δχ ̅ and
Δ(VNN + ω)/n contributions, i.e., the definition of eq 13. The
latter provides a straightforward measure of what percentage of
the total energy change is controlled by orbitals Δχ,̅ and how
much is controlled by Δ(VNN + ω)/n.

χ χ
χ ω

Δ ̅ = × |Δ ̅ |
|Δ ̅ | + | Δ + Δ |V n

“contribution“(%)
100

( )/NN
(13)

Looking again at the example of hydrogen formation (Figure
3), the combined term Δ(VNN + ω)/n = −0.57 eV e−1. If we at
the same time consider that Δχ ̅ = −1.83 eV e−1, this example of
“covalent”-bond formation appears in tune with the expect-
ations of most chemists, that orbitals govern reaction outcomes.
By eq 13, 76% of the interaction energy is due to the
stabilization of orbitals (an increased electron binding energy).
Below we will give examples where this almost intuitive
impression of orbital interactions can be misleading and where
changes in the average binding energy of electrons, Δχ,̅ and the
total energy change can take on opposite signs.

■ WHERE ORBITALS DO NOT GOVERN
Electron Attachment. One simple example of a very

different makeup of stabilization may be found in the reaction
of a hydrogen atom with an unbound electron to form the
hydride anion, H− (Figure 4). With knowledge of the
experimental electron affinity (+0.754 eV)79 of the hydrogen
atom, we can compare this process to the H2 formation
addressed earlier.

Here Δχ ̅ is large and positive, + 6.0 eV e−1. The 1s orbital
energy of H goes up substantially on binding an electron. At the
same time the reaction is exothermic by −0.75 eV. From eq 11
we see that if ΔE < 0 while Δχ ̅ > 0 and ΔVNN = 0, then Δω is
what determines the reaction outcome. The Δχ ̅ contribution is
negative relative to the overall total energy change, amounting
(by eq 13) to 48%. Consequently, it is the introduction of
multielectron interactions that enables this reaction.

Figure 4. Hydrogen’s favorable electron attachment is not orbital
controlled, but is enabled by multielectron interactions.
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Ionization of H2. Let us consider another simple ionization.
Due to a complete absence of multielectron interactions, we
can calculate χ ̅ for H2

+ in the following manner: First, the
experimental bond length (1.052 Å) enables calculation of the
nuclear−nuclear repulsion energy to 13.688 eV. By combing
the known bond energy of H2

+ (2.651 eV) with the nuclear−
nuclear repulsion energy and the ionization energy of the
hydrogen atom (13.598 eV), χ ̅ calculates as −13.688 + −2.651
+ −13.598 = −29.937 eV. Using this value we can proceed to
investigate the H2 → H2

+ + e− reaction. The χ ̅ value for an
unbound electron is zero. The unfavorable change in average
binding energy (Δχ ̅ = 0.46 eV e−1) is small compared to the
favorable change in ΔVNN/n, of −2.87 eV e−1. Note that here
the Δχ ̅ contribution to the total energy change is only 6% (by
eq 13) and that the majority of the energy change is due to the
removal of multielectron interactions, which amount to 10.285
eV e−1. Notice that Δω/n is positive, whereas earlier Δω/n was
negative. In this ionization, there is no electron−electron
interaction in the product cation. The neutral molecule, which,
of course, has significant electron−electron repulsion (negative
ω) is on the left side of the chemical equation.
Helium! Helium is analogous to H− in that the number of

electrons is the same (two), the nuclear−nuclear repulsion is
nonexistent and electron−electron interactions are present
(Figure 5). Again, we can rely on accurate experimental data.

The first and second ionization potentials of helium, 24.587 and
54.418 eV, are good approximations to χ ̅ for He and He+,
respectively. The first ionization potential also equals ΔE for
the ionization process He → He+ + e−. This allows calculation
of Δχ ̅ as +2.62 eV e−1 and of Δω/n as +9.67 eV e−1 for the
ionization process.

■ CLASSIFYING REACTIONS
By eq 11 and 12, there are eight possible combinations of Δχ,̅
ΔVNN, and Δω that can describe any exoergic or endoergic
transformation. These reduce to three main classifications, to
which the labels binding, nuclear and multielectron, each are
assigned with the suffix favored or resisted (Table 2). Favored
and resisted implies that the preceding term is the only one out
of the three (Δχ,̅ ΔVNN, and Δω) that favors, or resists, a given
transformation. That covers six of eight possibilities; if all terms

contribute with the same sign, we term the reaction as either a
relaxation or deformation.
In addition to these four cases, a transformation can be

simultaneously favored or resisted by changes to the vibrational,
rotational, and translational energy contributions to the total
energy change, ΔEthermal (eqs 11 and 12). Quite aside from ΔE,
any transformation can, of course, also be governed by changes
in the external pressure, via a pV term, or by the changes in
entropy, through a TS term. We would refer to such situations
as being “induced by pressure” or “entropy driven”,
respectively.
By the classification scheme outlined in Table 2, our first

example of dihydrogen formation is exoergic and nuclear-
resisted, whereas hydride formation is exoergic and multi-
electron-favored. As we will see in a more inclusive study of
chemical bonding in a subsequent paper, the latter classification
will surface again, when describing polarized (ionic) diatomic
bonds. Contrary to ionization of the hydride anion, H− → H +
e−, which classifies as multielectron-resisted (the reverse of
entry 2 in Table 1), the nuclear movement in the H2 → H2

+ +
e− reaction, instead leads to its classification as nuclear-favored.
In our last example, that of helium ionization, the ΔVNN term is
absent, and all contributions to the total energy change are
positive. That reaction is therefore classified as a deformation.
The reverse process can be considered a relaxation.
In practice, the eight main typologies for decomposing ΔE,

shown in Table 2, are not likely to be found in equal measure.

Subsequent papers will demonstrate that the two nuclear and
two multielectron classes are common examples in chemistry.
The binding classification requires ΔVNN and Δω terms of
equal sign, which is more rare. This may occur if net
movements of nuclei are small, which allows for changes to
exchange and correlation energies to dominate over coulomb
repulsion in, for instance, near vertical photoexcitations. Except
for frozen geometries, we have not yet conceived of a situation
where the relaxation/deformation classification applies. It might
be that this convergence can occur in special cases, for instance
when a small rearrangement of nuclei coincides with a suitable
intersystem crossing.

Figure 5. Ionization of helium is disfavored by all terms in the energy
expression.

Table 1. Experimental Energy Decomposition Analysis and Reaction Classification of Selected Two-Electron Systemsa

reaction: n (e) ΔE (eV) ΔE/n (eV e−1) Δχ ̅ (eV e−1), (%)c ΔVNN/n (eV e−1) Δω/n (eV e−1) classification:

2H → H2, dexp = 0.741 Å 2 −4.792b −2.396 −1.828 (76) 9.716 −10.285 nuclear-resisted
H + e− → H−a 2 −0.754 −0.377 6.045 (48) 0.000 −6.422 multielectron-favored
H2 → H2

+ + e−, dexp = 1.052 Å 2 15.739 7.870 0.457 (6) −2.872 10.285 nuclear-favored
He → He+ + e−a 2 24.587 12.293 2.621 (21) 0.000 9.672 deformation

aExperimental data from the NIST Chemistry WebBook. bΔE ≈ ΔH0 − EZPE, where EZPE = 1/2h∑νi
cΔχ contribution according to eq 13. The

examples shown here are simple. We ensure the reader that we will broach complexity and chemical utility in subsequent papers.

Table 2. A Classification of Chemical and Physical
Transformationsa

Δχ ̅ ΔVNN Δω classification

−/+ −/+ −/+ relaxation/deformation
−/+ +/− +/− binding-favored/resisted
+/− −/+ +/− nuclear-favored/resisted
+/− +/− −/+ multielectron-favored/resisted

aThree terms influence the change in energy, ΔE; “+” and “− ”denotes
positive and negative energy contributions, respectively.
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The four classes of reactions in which electronegativity, the
average binding energy, can be used as a reliable predictor of
exoergic preference are as follows: relaxation, binding-favored,
nuclear-resisted, and multielectron-resisted. For the remaining
four cases electronegativity arguments will predict an energy
trend opposite to what is actually observed. With this approach
one can start out by rationalizing a reaction course with Pauling
electronegativity (or any other scale, including our average
binding energy) and then easily check after the fact with this
analysis if that rationalization is reasonable, or explain why
there is no correlation. In the latter situations we now know
where to turn, ΔVNN and Δω.

■ TOWARD EXPERIMENTAL QUANTUM CHEMISTRY

The energy decomposition introduced in eq 2 is a way of
attaining explicit knowledge of molecular multielectron
interactions, obtained from experimental data. From this
perspective, and because of a natural complementarity and
interchangeability of calculated and experimental data in this
analysis, we can, in a way, begin to talk about experimental
quantum chemistry.
For all the reactions listed in Table 1, each has zero

multielectron interactions on one side of the reaction arrows
(H, He+, and H2

+ have only one electron each). In other words,
H2, H

−, and He ionization effectively removes all electron−
electron interactions. The same is true for the dissociation of
molecular hydrogen. Therefore, the experimental Δω/n
energies in Table 1 are absolute measures of the multielectron
interactions in H2, H

−, and He.
The multielectron interactions decrease as H2 (10.285 eV

e−1) < He (9.672 eV e−1) < H− (6.422 eV e−1). The largest
magnitude of ω is observed in H2, because in this situation
electrons are required to concentrate in-between the two
protons, to offset their nuclear repulsion. This effect can be
judged by comparing to the spherically symmetric helium atom,
which has an ω value 94% that of molecular hydrogen. Finally,
the hydride anion has electrons distributed more diffusely,
which naturally results in a lower ω value, 62% that of
molecular hydrogen.
This approach highlights several tantalizing prospects. For

instance, given that we begin with a one-electron system for
which we know the absolute energy, such as C5+ (−489.993
eV), it should, in principle, be possible to estimate the absolute
energy of any subsequent larger multielectron system, like the
carbon atom, or molecules derived thereof, by a series of
relative measures. This assumes that we can measure accurate
adiabatic electron attachment energies (electron affinities), or
ΔE, for each necessary step. Photoelectron spectroscopy of
each intermediate would reveal χ,̅ which, in combination with
the estimated total energy, enables extraction of ω. If multiple
nuclei are involved then structure determinations are needed to
measure ΔVNN, which accounts for geometry relaxation.
The technical difficulties of an undertaking aimed at absolute

energies will certainly be substantial. Fortunately, what matters
most in chemistry and physics are relative measures. As we have
described, the implementation of the Δχ ̅-based energy
decomposition analysis enables quantitative comparisons over
and between any two transformations.

■ CONCLUSIONS

Even with today’s great advances in computational chemistry
the concept of electronegativity remains a proven, useful tool. It

is of particular importance when chemistry is to be quickly and
“intuitively” rationalized. Building on Lee Allen’s definition of
configuration energies, this work begins by relating the classical
notion of electronegativity to the average electron binding
energy. This quantity, denoted χ,̅ is an average property
obtainable for any system with discrete electronic levels, such as
atoms and molecules, or with continuous bands, such as in
condensed matter. The average binding energy is, in principle,
accessible from experiment, through photoelectron and X-ray
spectroscopy. There are multiple approaches of approximating
χ ̅ theoretically, ranging from single and multireference wave
mechanics and DFT.
Molecular orbital theory has taught us the great predictive

power of orbitals. Can χ ̅ lead us to more chemistry still? The
average binding energy, χ,̅ has a rigorous, and understandable,
connection to the total energy. But χ ̅ is not the only thing that
changes in a chemical reaction or geometry change in a
molecule. There are in fact three primary contributions to the
changing total energy: the average electron binding energy Δχ,̅
the nuclear−nuclear repulsion ΔVNN, and multielectron
interactions Δω. Δχ,̅ ΔVNN, and Δω define a new energy
partitioning. We can classify all chemical and physical
transformations into four main types (Table 2), which describe
whether a transformation is energetically favored or resisted by
the collective changes to the binding energy of electrons, the
movement of nuclei, or multielectron interactions. In doing so
we gain insight into the predominant factors behind a particular
energetic preference. For instance, in H2 formation Δχ ̅
outweighs ΔVNN and Δω, but in electron attachment to H,
Δω dominates. The balance of χ,̅ ΔVNN, and Δω can also be
used to predict when more traditional electronegativity
arguments can be justifiably invoked in the rationalization of
a particular event. In the next paper in this series, we will study
bond formation in a wide range of diatomics.
In a time of ever increasing interdisciplinary research, we

believe that both χ ̅ and the χ-̅based energy decomposition
analysis, presented herein, can be quick and reliable tools for
those seeking to understand the collective “will” of orbitals and
bands and chemistry and physical transformations.

■ METHODOLOGY
All experimental data are taken from the National Institute of
Standards and Technology (NIST) WebBook, unless otherwise
specified. All energies are given in electronvolt (eV) or electronvolt
per electron (eV e−1) units. One eV = 96.4853 kJ/mol = 23.0605 kcal/
mol. To approximate the electronic energy of formation ΔEf from
experimental heats of formation, ΔHf

0, and vibrational spectroscopy,
the experimental harmonic zero-point energy EZPE is subtracted, i.e.
ΔE ≈ ΔH0 − EZPE, where EZPE ≈ 1/2h∑νi, and where νi is the ith
fundamental frequency of the molecule.

Experimental geometries were used throughout, except for the
molecular fragments shown in Figure 2. These geometries were
obtained by optimization at the M06-2X80−82/cc-pwCVTZ level of
theory, using Gaussian 09.83

The absolute values of calculated χ’̅s are dependent on the basis set.
In particular diffuse functions are crucial (see the Supporting
Information). Here all calculated χ ̅ values have been approximated
from molecular orbital energies, following all-electron calculations
using the range-separated LC-BLYP52 functional, together with the
aug-cc-pVQZ basis set.

Whereas valence states can be obtained with a high accuracy with
modern range-separated DFT functionals,84,85 the orbital energies of
core electrons are unfortunately underestimated. It has been proposed
that the DFT self-interaction error is to blame. One solution is the use
of functionals that include pseudospectral regional self-interaction
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correction.84 However, as such methodologies are still in their infancy
and exhibit poor general accuracy, we have not applied them at this
time. A popular approach to calculating core electron binding energies
is referred to as ΔSCF (SCF = self-consistent field). It requires the
explicit converging of ground and core-ionized state densities and
taking their energy difference.86 Yet another computational possibility
is to combine the results of a suitable level of theory, with experimental
reference energies, obtained from X-ray photoelectron spectroscopy,
X-ray absorption, X-ray emission spectroscopy, or other related
techniques.
Contrary to the absolute values of χ,̅ estimations of Δχ ̅ are

considerably more reliable, because of error cancellations. This is true
irrespective of whether χ’̅s are estimated theoretically or measured
experimentally. Calculations of Δχ ̅ appear only marginally affected by
basis set deficiencies. Similarly, whereas the absolute χ ̅ values can vary
quite significantly between different levels of theory, this is not our
experience for Δχ.̅ All of the reported Δχ ̅ values, obtained with LC-
BLYP, could be closely reproduced by calculations with the M06-2X
functional. In principle, the energies of core electrons can shift in the
opposite direction to those of the valence band, in which case their
exclusion from a calculation, e.g., using pseudopotentials, will cause an
error in the relative average binding energies, Δχ.̅ Nevertheless, for
many transformations a valence-only approach should offer an
acceptable approximation to Δχ.̅
The valence χ ̅ of graphene was estimated from periodic plane-wave

calculations using the HSE06 hybrid exchange-correlation density
functional87 and the Vienna Ab Initio Software Package. The default
projector augmented wave88,89 potential for carbon and a 600 eV plane
wave energy cutoff were implemented. Brillouin zone integration of
the primitive unit cell was performed on a Γ-centered grid, which
spanned 21 × 21 × 1 k-points. The DOS energy scale was referenced
to the true vacuum by analyzing the value of the local potential far
from the graphene sheet. See the Supporting Information for further
details.
A python script for performing the χ-̅analysis on molecules and

atoms is provided in the Supporting Information. It relies on cclib,90

which can interpret output from numerous popular quantum
chemistry programs.
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Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.:
Wallingford, CT, 2009.
(84) Nakata, A.; Tsuneda, T. J. Chem. Phys. 2013, 139, 064102/1−
064102/10.
(85) Tsuneda, T.; Singh, R. K. J. Comput. Chem. 2014, 35, 1093−
1100.
(86) Ljubic, I. J. Chem. Theory Comput. 2014, 10, 2333−2343.
(87) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. J.
Chem. Phys. 2006, 125, 224106/1−224106/5.
(88) Bloechl, P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994,
50, 17953−17979.
(89) Kresse, G.; Joubert, D. Phys. Rev. B: Condens. Matter Mater. Phys.
1999, 59, 1758−1775.
(90) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput.
Chem. 2008, 29, 839−845.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b05600
J. Am. Chem. Soc. 2015, 137, 10282−10291

10291

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Se

pt
em

be
r 

15
, 2

01
5 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
ug

us
t 1

0,
 2

01
5 

| d
oi

: 1
0.

10
21

/ja
cs

.5
b0

56
00

http://dx.doi.org/10.1021/jacs.5b05600

