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Vibronic coupling for inter–valence charge–transfer states in linear symmetric ABA
molecules (A, B = s–, p– or d–block element) is investigated computationally. In particu-
lar we examine vibronic coupling as a function of the s, p, d – block nature of the A and B
constituent elements. Based on density-functional theory computations for 395 triatomic
molecules, we construct a map of a vibronic stability parameter G (defined as the ratio of
asymmetric to symmetric stretching force constants) across the periodic table. Correla-
tions of G versus the sum and difference of electronegativities of A and B elements are
tested, and also vs. a useful parameter f, the ratio of the sum of electronegativities to an
AB separation. Usually, the larger the sum of electronegativities, and the shorter the AB
bond, the larger the vibronic instability. The largest vibronic instability thus occurs for
interhalogen compounds. Molecules containing d-block elements exhibit trends similar
to those of molecules built of p-block elements with similar electronegativities, although
the latter are usually more unstable.
A molecular orbital model is developed to explain the trends obtained in our computa-
tions, as well as to build a framework for systematic manipulation of vibronic coupling
constants in molecular systems. From the model we argue that vibronic coupling is usu-
ally strongest in systems built of hard Lewis acids and bases. We also show that s–p mix-
ing and “ionic/covalent curve crossing” increase the vibronic instability of a molecule.
To attain high vibronic instability, one should build a molecule of light, highly electro-
negative p–block elements. These findings may be of use in the experimental search for
new superconducting materials.

Key words: triatomic radicals, quantum mechanical calculations, vibronic coupling,
hardness, avoided crossing

There are many theories of solid-state superconductivity (SC), the best known be-
ing the BCS theory [1]. The electron-phonon coupling constant (EPCC) and the den-
sity of states at the Fermi level (DOSF) are the most important parameters in the BCS
theory. The theory predicts that the critical superconducting temperature (Tc) is high
when both DOSF and EPCC are large. Although the BCS theory cannot quantitatively
explain high-temperature superconductivity, there is strong evidence of the impor-
tance of vibronic effects for the latter as well [2]. This is where our interest in vibronic
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coupling constants (VCCs, the molecular analogue of the EPCCs), detailed in several
preceding papers, originates. We investigate simple AB and A2B

� molecular systems,
aiming to find the relationships between the chemical nature of the elements consti-
tuting these systems and their propensity to vibronic instability. Our eventual goal is
to develop a chemical strategy for tuning VCCs and EPCCs.

In our first paper we studied the behavior of VCC� eg
i [eV] within a broad space of

three parameters: force constant (k), displacement along symmetry-breaking normal
coordinate (�Q) and reduced oscillator mass (m) [3].

� eg
i = (� eg

i )v = h eg
i x <ug|Qi|ve> [eV] (1a) h eg

i (Qi) = <g|�H/�Qi|e> [eV/Å] (1b)

where g and e are the diabatic electronic wavefunctions of two vibronically coupled
electronic states, ug and ve are vibrational wavefunctions for normal mode i, in g and e
states respectively, and �H/�Qi is the derivative of Hamiltonian along the normal co-
ordinate Qi through which coupling occurs.

We concluded that maximizing� eg
i requires precise control of the nuclear geome-

try appropriate for a given (k, m) pair. Subsequently we concentrated on diagonal and
off-diagonal linear dynamic VCCs. In a second paper we investigated the diagonal
VCC (h ee

i ) for T1 states of AB molecules where A, B = alkali metal, H or halide [4]. A
parameter f, defined as a sum of Pauling electronegativities of the A and B elements
divided by AB bond length:

f = fAB = (ENA + ENB)/ RAB (2)

was found to be very useful in correlating h ee
i for three distinct classes of molecules:

intermetallics (M1M2), interhalogens (X1X2) and “salts” (MX), including metal hy-
drides (MH) and hydrogen halides (HX).

Subsequently we looked at the off-diagonal VCC (h eg
i ) for triatomic linear ABA

molecules where A, B = alkali metal, H or halide [5]. We found that the same parame-
ter f is of value in a qualitative description of h eg

i : large values of f usually indicate
large h eg

i . We noted the utility of f for qualitative studies of vibronic coupling in three
families of ABA molecules: intermetallic species M2M�, interhalogen species X2X�
and “salts” (M2X and X2M).

This paper is the fourth part in the series “Chemistry of Vibronic Coupling”. We
now broaden the range of molecules for which VCC’s are studied [6]: we study h eg

i for
ABA� molecules where A, B = s, p, d block element. We try to see which type of or-
bital (s, p, or d) helps to maximize off-diagonal VCC’s in A2B

� systems. We also
explain the trends observed using a molecular orbital (MO) model.

In our next pape [7] we will try to show how the considerations of vibronic cou-
pling constants for simple molecules may be extended to solid state systems with
high-symmetry lattices.
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METHODS OF CALCULATIONS

A description of the vibronic coupling model used here may be found in the Methods of Calculations

section of [3]. Numerical data (shown in Supplement, Tables S1 and S2) have been obtained from density
functional theory (DFT) B3LYP computations with a 6-311++G** basis set for light elements and
LANL2DZ core potentials for heavier s- and p-block elements (for details see [4]) and for all d-block ele-
ments. An equilibrium AB bond length has been computed while constraining the ABA species to be lin-
ear. Force constants for the symmetric and antisymmetric stretching modes have been subsequently
computed.

We have used the following computational packages: Gaussian’94 [8] and HyperChem 5.0 [9] for
SCF and DFT calculations, YAEHMOP [10] and CACAO [11] for EH calculations.

Tables S1 and S2 may be found in the Supplementary Material to this paper.

RESULTS AND DISCUSSION

1. DFT Computations of the Off-Diagonal Vibronic Coupling Constant.

1.1. heg
i for Inter Valence Charge Transfer States of ABA Molecules where

A, B = s, p – block Element.

In this section we concentrate on linear triatomic radicals of the general formula
ABA�. Such molecules are ideal for studying the off-diagonal VCC h eg

i for the
antisymmetric stretching mode. This parameter is often studied with relevance to sys-
tems exhibiting a second order Jahn-Teller effect [12]. Previously we had investi-
gated 100 linear symmetric ABA� molecules [13] for A, B = H, alkali metal or halide
[5]. Now we broaden this study to all s– and p–blocks of elements, investigating an
additional 240 ABA� molecules [14]. Numerical data for all 340 molecules are shown
in Table S1 in the Supplement.

Our focus in this study is on a parameter G. We introduced G while studying
vibronic coupling for ABA� radicals where A, B = alkali metal, halide or H [5]; G is
defined as ratio of force constants for the asymmetric and symmetric stretching
mode:

G = ku/kg (3)

This dimensionless parameter is very useful as a quantitative description of the
“asymmetric mode softening” which follows from vibronic coupling. Large positive
values of G imply vibronic stability of a linear molecule along the asymmetric
stretching coordinate (Qas). Small positive values of G correspond to asymmetric
mode softening, i.e. substantial vibronic coupling along Qas. Negative G implies
strong vibronic coupling and instability of the molecule along Qas.

The electronegativity, as problematic as its definition is [15], is an obvious
“chemical” parameter with which one might correlate G. Since the 1930’s electro-
negativity differences have been identified with bond polarity [16], and subsequently
used in diverse chemical problems (heats of formation [17], X-ray absorption edge
shifts [18], XPES [19], IR [20]). Occasionally, a difference of ionization potentials
has also been used [21]. On the other hand, the sum of electronegativities (which we
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will use later in the paper) has been successfully applied to describe qualitatively
bonding between chemical elements in solid state in the Arkel-Ketlaar diagrams [22],
and to evaluate the total inductive effect of the substituents on a carbon or tin atom
[23]. Parr and Pearson, using density functional theory, first introduced hardness, a
parameter closely related to electronegativity [24]. Differences of hardnesses have
been successfully used to derive bond energies [25], and to classify binary octet com-
pounds [26]. On the other hand, the sum of hardnesses has been applied to construct
phase diagrams in solid state [27]. Our contribution is the recognition of the utility of
the parameter f (the sum of electronegativities divided by distance) for quantitative
correlations [28]. As far as we know, a similar approach has been used only once in
correlation between the experimental values of force constants and forces in diatomic
H-containing molecules [29].

Why ABA radicals? The reason is that the asymmetrization process in such linear
species contains the essential electron transport component that characterizes con-
ductivity: A+–B– + A0 � A–B–A � A0 + B––A+.

We discuss in this paper the motion of symmetric linear ABA molecules exclu-
sively along an asymmetric stretching coordinate. Why do we constrain ABA mole-
cules to a linear geometry, which may not necessarily correspond to the ground state
of a molecule? The reason for that is that in the linear geometry there is a particularly
effective and simple way to analyze coupling of the antisymmetric stretching mode
with the charge-transfer process between A centers.

We need to emphasize here that, as important as some of these molecules are in
their own right, we are interested neither in computing the lowest energy geometry for
a given system [30], nor in providing a description of the whole potential energy sur-
face determining dynamics of, for instance, the “SN2” A–B–A � A0 + B––A+ reaction
[31]. Both tasks would require geometry optimization of a triatomic in a full space of
nuclear coordinates. Our goal is something different, namely a comparison of
vibronic stabilities within a certain class of species (linear symmetric radicals [32]),
in the search for chemical trends and useful correlations.

In seeking such trends and correlations, we plot G versus the difference of
Pauling electronegativities of B and A elements (� EN) constituting ABA� molecule.
Two kinds of such plots will be of particular importance: one emphasizes the affilia-
tion of B to a given group of the periodic table, another to a given period. In Figs. 1 and
2 we show such plots (for periods II and V). In Figs. 3 and 4 we plot G versus �EN (for
groups 1 and 13). To highlight the regularities, in each case some lines are sketched
which connect in a schematic way (these are not fits) the points for a given element.

It appears that there are three kinds of shapes of G vs �EN plot, depending
whether B is a typical nonmetal or a typical metal, or is intermediate between the two.

i) For B a typical nonmetal, such as F or O, the plot seems to peak at a certain � EN
(we will call it hereafter � ENpeak). G decreases steeply from � ENpeak toward
more negative and more positive values of � EN. The formal borderline of � EN
= 0 (for � EN < 0, B serves as the anion in an A2B

� molecule, for � EN > 0, B
serves as the cation) appears to play no important role for G. The position of the
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Figure 1. G for triatomic A2B linear symmetric molecules, plotted vs difference of Pauling electro-
negativities of B and A elements; � EN = ENB – ENA. A belongs to IInd period (data for H are
also shown). Schematic lines for A= fluorine, boron, lithium (not a fit in any way) have been
introduced to guide the eye.
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Figure 2. G for triatomic A2B linear symmetric molecules, plotted vs difference of Pauling electro-
negativities of B and A elements; � EN = ENB – ENA. A belongs to Vth period of the periodic
table. Schematic lines for A= rubidium, iodine have been introduced to guide the eye.
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Figure 3. G for triatomic A2B linear symmetric molecules, plotted vs difference of Pauling electro-
negativities of B and A elements; � EN = ENB – ENA. A belongs to Ist main group of the peri-
odic table. Schematic lines for two branches of points for A= sodium have been introduced as a
guide.
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Figure 4. G for triatomic A2B linear symmetric molecules, plotted vs difference of Pauling electro-
negativities of B and A elements; � EN = ENB – ENA. A belongs to IIIrd main group of the peri-
odic table. Schematic lines for A= thallium, boron have been introduced as a guide.



� ENpeak usually occurs for � EN < 0, but is characteristic for a particular ele-
ment B.

ii) The second type of plot is for B a typical metal such as Li or K. Its shape is com-
plicated. It is composed of two branches of points: one for intermetallic A2B
molecules (near � EN = 0) and another one for “salts” (at large positive values
of � EN). G usually increases as a function of � EN within the second branch. It
seems difficult to define a transition between the two branches.

iii) The third type of plot is found for B a semimetal (such as Sb) or a poor metal
(such as Tl). It is characterized by a less steep decrease of G vs � EN depend-
ence than for nonmetals. The shape of the G vs � EN plot seems to be intermedi-
ate between the metal- and nonmetal-type plots. It is exemplified by the right
part of the plot for I, and by the left part for Rb (Fig. 2). As may be seen from Fig. 4,
the transition between a metal- to semimetal- and nonmetal-type dependence is
smooth, as exemplified by triatomics containing group IIIA elements.

We have observed similar features studying plots (not presented here) for ele-
ments from all other groups and periods of periodic table.

In an attempt to visualize better the dependence of the vibronic stability parame-
ter G on the chemical nature of A and B elements, we construct a map of G within the
periodic table. This is a complicated map, so in Fig. 5 we show first a “guide” to this
map; it is useful in defining some of the regions. The ordinate is the difference of
Pauling electronegativities of A and B elements constituting the A2B molecule (�
EN). The abscissa is the sum of Pauling electronegativities of B and A elements (ENA

+ ENB). “Ionic” molecules may be found at left and right of the diagram. “Covalent”
molecules are found in the middle of the diagram. Cs3, F3, Cs2F and CsF2 molecules
determine the corners of the diagram. The plot is divided roughly into four areas:
“intermetallic” (s,s,s) molecules, “salt-like” (s,p,s) and (p,s,p) molecules and (p,p,p)
molecules built of nonmetals. The black dot represents a homonuclear A3 molecule.
Orange solid lines indicate the position of possible A2B and AB2 molecules where A
formally serves as anion. A2B and AB2 molecules, where A formally serves as cation,
are found along the orange dotted lines. The labels “ionic” and “covalent” refer not to
molecules in a given square, but to a rough region where |� EN| is large and small, re-
spectively.

G behaves in a very interesting way, as Fig. 6, the actual map, shows. Salt-like and
intermetallic molecules are vibronically stable (G � 2). Molecules built of nonmetals
are vibronically unstable (G < 0). There is a formal borderline between vibronic sta-
bility and instability (the isoline G = 0). The isoline for G = 1 (indication of substan-
tial asymmetric mode softening) is readily visible in Fig. 6. The transition between G

= 1 and G = 0 regions is relatively steep, indicating that tuning of G might be a prob-
lem in practice.

A slight left-right asymmetry of the map presented in Fig. 6 is its interesting fea-
ture. The vibronic stability of ABA and BAB molecules is, of course, not the same.
This is especially clear for molecules containing nonmetals (upper part of map in Fig. 6).
Typically, the instability of BAB molecules, where B is the more electronegative ele-
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Figure 5. Schematic guide-plot for Fig.3. The ordinate is the difference of Pauling electronegativities of
A and B elements constituting the A2B molecule (� EN). The abscissa is the sum of Pauling
electronegativities of B and A elements (ENA + ENB). “Ionic” molecules may be found at left
and right of the diagram. “Covalent” molecules are found in the middle of the diagram. The la-
bels “ionic” and “covalent” refer not to molecules in a given square, but to a rough region where
|� EN| is large and small, respectively. Cs3, F3, Cs2F and CsF2 molecules determine the corners
of the diagram. The plot is divided roughly into four areas: “intermetallic” (s,s,s) molecules,
“salt-like” (s,p,s) and (p,s,p) molecules and (p,p,p) molecules built of nonmetals. The black dot
represents a homonuclear A3 molecule. Orange solid lines indicate the position of possible A2B
and AB2 molecules, where A formally serves as anion. A2B and AB2 molecules, where A for-
mally serves as cation, are found along the orange dotted lines.
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Figure 6. Map of vibronic stability parameter (G) in the periodic table of elements. The ordinate is � EN,
the abscissa is (ENA + ENB). For a more detailed description see text. Fig. 5 is a guide to this
plot.
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Figure 7. Map of vibronic stability parameter (G) in the periodic table of elements. The ordinate is � EN,
the abscissa is f. For a more detailed description see text.



ment, (such as F2H with G = –0.31) is smaller than that of ABA molecules (such as
H2F with G = –1.33) [33].

Previously we found that parameter f (see Eq. 2 above, f is the sum of the
electronegativities divided by the equilibrium bond length) is of use in describing
vibronic effects in AB and A2B molecules [4,5]. Let us try then to correlate G with f (f
substitutes (ENA + ENB) as a variable in Fig. 6). This new map is presented in Fig. 7.

Fig. 7 resembles Fig. 6 in its general shape. Molecules with large values of f are
the most vibronically unstable species. The left-right asymmetry of the plot presented
in Fig. 7 is even more evident than in Fig. 6. It is remarkable that this simple empirical
parameter, f, again proves useful for a qualitative description of the vibronic coupling
phenomenon.

The primary conclusions of this section are:
i) In looking for large vibronic instability in A2B molecules one should search

among molecules with large f [34]. Such species are usually built of nonmetals
with short AB bonds.

ii) ABA molecules (where B is more electronegative than A) are usually more
vibronically unstable than the corresponding BAB molecules.

Let us now examine vibronic coupling in triatomic linear symmetric molecules
containing d-block elements as well.

1.2. heg
i for IVCT States of ABA Molecules where A = s, p – block Element, B = d –

block Element.

The p- (C [35], Bi [36]) and especially the d-block elements (Cu [37], recently Hf
[38]) are at the heart of real breakthroughs in solid-state superconductivity. We will
now examine vibronic coupling in molecules containing d-block elements.

Studying molecules containing d-block elements requires assuming a certain
multiplicity. For consistency, and to compare molecules containing s-, p- and d-block
elements, we will limit our mixed-valence A2B

� radicals to doublet states. Such states
may or may not be the ground state of the molecule in question.

We have investigated molecules containing two distinct sets of d-block metals.
One group contains Ti, Zr and Hf – the most electropositive elements in the d-block
(ENHf = 1.3, compare to ENMg = 1.2). Another set contains noble and semi-noble met-
als (group VIIIB and IXB) – the most electronegative elements in the d-block (ENAu =
2.5, compare to ENI = 2.5). Molecules containing d-block elements would occupy a
broad space in our Fig. 5.

Is there a bridge between vibronic coupling in molecules containing s- and
p-block elements and those with d-block elements? May such a connection be de-
scribed using such simple empirical parameters as EN or f? How might one distin-
guish between Cu, Hg, Bi, Fe, Re, whose electronegativity is nearly equal? We do not

expect that electronegativity – although useful in so many areas of chemistry – will
describe well the whole richness of so many features of different elements. Let us,
however, make a try. If we used the map presented in Fig. 6 as a guide for molecules
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containing d-block elements, we would conclude that most such A2B molecules
should be vibronically unstable (especially these containing noble metals). Some of
these molecules might be subject only to significant asymmetric mode softening.

Let us now confront these expectations with the result of DFT computations. Fig. 8
plots the vibronic stability parameter G for chosen linear symmetric A2B molecules
[39] vs. the difference of Pauling electronegativities of A and B elements (A is a given
d-block element, B is a s- or p-block element).

It is clear from Fig.8 that triatomics containing d-block elements do not behave as
predicted based on trends for s- and p-block elements. All the molecules investigated
are vibronically stable, contrary to our expectations [40]. There is substantial vibro-
nic coupling (G < 1.5) in seven molecules: four Au-containing ones, one Ru-contai-
ning one, and two Os-containing ones. Absolute values of G for triatomics containing
d-block elements are, however, larger than for the respective p-block elements con-
taining molecules of similar EN.

Are not there any similarities in vibronic stability in p-block- and d-block-
containing molecules? We think there are. The shape of G vs. � EN dependence for
Au is very similar to that observed before for I (iodine) – it is typical of nonmetals or
poor metals. On other hand, the general shape of the G vs. � EN dependence for Cu is
more similar to that observed before for metallic s- and p-block elements. This docu-
ments that vibronic stability in molecules containing d-block elements exhibits
trends similar to ones observed for molecules containing s- and p-block elements.

2. Model of Vibronic Coupling Along Qas in Symmetric Linear ABA� systems – MO

Picture.

How to understand and predict in a qualitative way vibronic stability or instability
in a large family of linear symmetric triatomics? We will try to answer this question
using first a simple molecular orbital model. Two levels of theory are explored: ex-
tended Hückel theory (EH) and DFT. EH will help us establish a framework of discus-
sion for vibronic effects. DFT will enable us to add more subtle quantitative effects to
the qualitative backbone introduced by EH.

2.1. Vibronic Coupling in the Extended Hückel Model.

Simplistic thinking within EH helped us build a qualitative framework for
vibronic coupling [41]. Let us use now a similar approach. We choose a linear sym-
metric H3 molecule as a general model for A3 molecules. Let us follow the normal co-
ordinate for antisymmetric stretching (Q = Qas) in this system and observe what
happens to the MOs.

Fig. 9 shows the molecular orbitals for H3 molecule during distortion along Qas.
The starting geometry has an H–H bond length of 0.931 Å (the result of a DFT optimi-
zation for a linear H3 constrained to be symmetric). Schematic drawings illustrate the
contribution of the atomic orbitals to the MOs of H3.
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Figure 8a. Plot of vibronic stability parameter G for linear symmetric A2B molecules vs. difference of
Pauling electronegativities of B and A elements. a) A belongs to group 10 or 4. B = alkali
metal, H or halogen. Arbitrarily drawn lines have been introduced to guide the eye to trends
for A= Cu, Au.
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Figure 8b. Plot of vibronic stability parameter G for linear symmetric A2B molecules vs. difference of
Pauling electronegativities of B and A elements. b) A belongs to “noble metals”. B = alkali
metal, H or halogen.



The evolution of the MOs of H3 during distortion is easily described. There are
three � MOs. In order of increasing energy these are the �g (SOMO-1), �u (SOMO)
and � g

* (SOMO+1) of the undistorted i.e. symmetric molecule (SOMO is a singly oc-
cupied molecular orbital). The �g is nearest neighbor H–H bonding, �u is nonbonding
and� g

* is antibonding. In D	h these canonical orbitals do not mix. However, as the D	h

symmetry is broken in a deformation along Qas, all � orbitals may mix with one an-
other. There is a decrease in energy connected with this distortion (for 3 electrons in
the system). In the discussion that follows we use the �g, �u and � g

* notation for the
three MO’s even when the symmetry is lowered to C	v along Qas.
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Figure 9. Following the normal coordinate for an antisymmetric stretch Qas in a linear symmetric H3

molecule (the EH computation). The sizes of the circles are a schematic indication of the AO
contribution in the MO; the actual percentages are given.



The orbitals of a significantly asymmetric molecule are substantially different.
For (exaggerated) Qas = 0.45 Å the SOMO and SOMO + 1 resemble bonding and
antibonding � and �* orbitals of an H2 molecule and the SOMO has its main contribu-
tion from an “isolated” H atom. The result is expected; an excursion along Qas brings
about localization to a single strongly bound H–H molecule and an H atom.

Let us trace the perturbation of this MO scheme as we change the extended
Hückel Coulomb parameter Hii for the middle H atom. In this way we can simulate the
substitution of the central atom by more electronegative/electropositive elements,
which is what the G or ku plots study. We have varied the Hückel Hii for the middle H
atom over broad limits (keeping the H–H separation of R0 = 0.931 Å = const., as opti-
mized for a symmetric linear H3 molecule at the B3LYP/6-311++G** level).

The resulting energy levels and schematic MO pictures are presented in Fig. 10.
We show three extreme cases: the difference of Hückel parameters between cen-

tral and side H atoms (� Hii defined as Hii (H�) – Hii (H) in an HH�H molecule; � Hii is
used as a variable in Figs. 12, 13 and 14) being a) –15 eV, b) 0 eV and c) +15 eV. The
starting point is the standard hydrogen Hii of –13.6 eV. The Hii’s of the terminal atoms
are kept constant, only that of the central atom is varied. Cases a) and c) simulate (in
exaggerated manner) the electronegativity effect of substitution in H2F and H2Cs
molecules, respectively [42]. We will therefore denote these cases as H2X and H2M,
respectively.

What are the basic similarities and differences between the three cases presented
in Fig. 10? First, we immediately notice no change in the shape and energy of the
SOMO (�u). This is obvious, considering that the perturbation is in the nodal plane of
the �u. In a self-consistent calculation, the energy of the �u will actually change as the
electronegativity of the perturbed ligands makes the end atoms more or less positive.
Second, the � Hii = –15 eV and � Hii = +15 eV cases are rough “mirror images” of each
other. We mean here that contributions from atomic orbitals to �g for � Hii = –15 eV
are close to contributions from the same atomic orbitals to � g

* for � Hii = +15 eV (ex-
cept for the different H-H bonding/antibonding character of both MOs). The same is
true for � g

* at � Hii = –15 eV and �g at � Hii = +15 eV. Third, and as expected, paired
orbitals (SOMO±1, i.e. �g and � g

* ) localize, so that in the bonding MO the density is
larger on the more electronegative atom, while the reverse is true in the antibonding
MO [43]. As a consequence of that localization the charge distribution in “H2X” and
“H2M” is, respectively, closer to (H2

+�)X– and (H2

�)M+, rather than H2(X

�) and
H2(M

�). Fourth, as may be seen in Fig. 6b, the energy of �g strongly increases in direc-
tion H2X � H3 � H2M while the energy of � g

* strongly decreases in the same direc-
tion.

Let us take now a vibronic coupling perspective on the three cases analyzed.
Using perturbation theory, one may write the expression for the perturbed wave-
function of a given i-th MO as:
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where� i
' is the perturbed wavefunction of the i-th MO, � i

0 is the initial wavefunction
of the i-th MO, � j

0 is the initial wavefunction of an admixing MO, � i
0 is the energy of

the initial given MO, � j
0 is the energy of the initial admixing MO, �ij

' is the
off-diagonal mixing element. The summation is over all MOs different than the i-th.
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Figure 10. MO scheme for a linear symmetric AHA molecule with extended Hückel Hii for central H
atom varied. We show three cases (H2X, H3, H2M) described in text.



The geometry change (asymmetrization of a molecule) is the perturbation in question
[44].

Given that, one would reason that the vibronic mixing along Qas will be large if:
i) the energy gap between mixing orbitals (� i

0 – � j
0 ) is small, and

ii) the atomic contributions to given MOs are such as to maximize mixing of
orbitals along Qas.

For H2M, the computed �g/�u and �u/� g
* energy gaps are about 3.8 eV and 5.4 eV,

respectively. For H2X, the respective computed gaps are about 18.6 eV and 29.8 eV.
Thus, following the reasoning of i) above, one might conclude that vibronic stability
would increase in the order: H2M, H3, H2X. This is contrary to our DFT computations
(section 1.1).

We turn then to criterion ii). To make the following discussion clearer, we will call
hereafter the three hydrogen atoms in the H–H–H molecule of Figs. 9 and 10 Hleft,
Hcenter and Hright, respectively. Let us look again at Figs. 9 and 10. The energy differ-
ence between �g and �u is always smaller than the energy difference between �u and
� g

* . This is a consequence of the inclusion of overlap in the calculation. Using
perturbation theoretic reasoning (the energy denominator in Eq. 4) we expect that con-
tribution from �g/�u mixing to total vibronic stabilization will be larger than the con-
tribution from �u/� g

* mixing. The latter is not negligible, however, because the �u/� g
*

gap is only 3 times larger than the �g/�u in case of the H3 molecule (Fig. 9). And the
AO coefficients in the � g

* are larger than in �g. Thus, we have to consider all three
orbitals of H3 in a qualitative picture of vibronic coupling.

Why and how do the atomic orbitals contributions in MOs of H3 change as we
move along Qas? Let us trace the evolution of these orbitals step-by-step, using
perturbational reasoning. In a first step we will move the AOs together with nuclei
along Qas. In a second step we interact the MOs so obtained (which are no longer solu-
tions of the eigenvalue problem for the asymmetric system) to get new “true” MOs of
asymmetric H3. The two-step procedure described here is illustrated in Figs. 11a and
11b.

Consider first the mixing of �u into �g. As indicated schematically in Fig.11a, the
geometrical perturbation increases bonding overlap between 1s (Hcenter) in �g and 1s
(Hright) of �u (see arrows, 1s (Hcenter) in �g is closer to 1s (Hright) of �u). Therefore, (see
bottom of Fig. 11b), �g mixes into itself �u with a positive sign (in a bonding way).
The result (in �g) is to have the coefficient of Hright increase and that of Hleft diminish.

Along Qas, �u interacts with both �g and� g
* . �u mixes into itself �g with a negative

sign (in an antibonding way, since it is the higher energy member of an interacting
pair), and � g

* with a positive sign (in a bonding way, since �u is below � g
* ) [43]. The

net result is to have the Hleft coefficient in �u grow, and that of Hright diminish.
Let us imagine now substitution of Hcenter by a more electronegative element (see

Fig. 10). In this case, the contribution of 1s AO of Hcenter to �g is larger than for the
unsubstituted H3 molecule. Note that contributions of Hleft and Hright to �u (very im-
portant for vibronic coupling) do not change upon substitution of Hcenter. Since the Hii

term in the perturbation expression depends on the coefficient products, in course of
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molecular distortion along Qas the overlap changes between 1s of Hcenter in �g and 1s
of Hright and Hleft in �u will be more pronounced in an H2X than in an H3 molecule. In
this way, the vibronic coupling should be then stronger in H2X molecules than in H3.
Applying the same line of thinking to H2M molecules (Hcenter substituted by a more
electropositive element) we can deduce that condition ii) will favor stronger vibronic
coupling in “normal” H3 over H2M molecules.

As one can see from the above discussion, conditions i) and ii) have an opposite

influence on vibronic stability, when Hcenter in H3 is substituted by another element.
What will be the net effect? It is difficult to answer this question without detailed
computation. Hence, we have performed a series of EH calculations for an H3 mole-
cule varying the extended Hückel Hii for the central H atom. In addition we have
varied the H–H distance (preserving a symmetric linear arrangement of nuclei). In Fig. 12
we show a plot of ku (force constant for the asymmetric stretching mode) versus the
difference of Hii between central and side H atom (� Hii). Negative � Hii in Fig. 12 im-
plies that we are dealing with the “H2M” case (center more electropositive), positive
� Hii with H2X. The force constant has been computed here as square root of the stabi-
lization energy. A formal negative sign has been introduced for the force constant if
the corresponding computed frequency was imaginary.

We need to emphasize that ku and not G = ku/kg is plotted in Fig. 12. The reason for
that is that the EH cannot reliably compute kg (the force constant for the symmetric
stretching mode), and so rather than deal with errors in kg influencing G, we have cho-
sen to focus on ku directly.

The influence of Hcenter substitution by another element, which differs in electro-
negativity which is predicted by EH (presented in Fig. 12), may be summarized as fol-
lows:

i) Substitution of Hcenter by a more electronegative element (� Hii > 0) strongly de-
creases the vibronic stability of the molecule.

ii) On the other hand, substitution of Hcenter by a more electropositive element (�
Hii < 0) increases the vibronic stability of the molecule.

iii) Vibronic stability always decreases with bond length decrease, but the effect is
not great. Although this feature agrees with the observation that molecules with
large f (and thus with short bonds) are usually vibronically unstable, it might be
also an artifact of the EHT [45].

Let us confront these predictions of EH (Fig. 12) with the results of actual quan-
tum mechanical computations for triatomics. For this purpose we plot in Fig. 13 ku

(computed by DFT for a series of molecules) versus the difference of extended
Hückel Hii of the valence orbitals of elements constituting a given molecule. The dif-
ference in EH Hii should be related to an electronegativity difference; we are reaching
here for a relationship between the ku or G vs. � EN plots shown earlier and an EH ana-
logue.

Chemistry of vibronic coupling... 1625



There are some differences between EH predictions (Fig. 12) and results of the
DFT computations (Fig. 13). This is not unexpected, since extended Hückel calcula-
tions are particularly poor for distances. Indeed, EH does not predict correctly the ab-
solute values of ku (ku is always negative in EH, contrary to DFT computations).
Might one at least trust the trends predicted by EH for ku vs. � EN dependence and ra-
tionalize them?
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Figure 13. Plot of ku for a series of A2B linear symmetric molecules plotted versus the difference of ex-
tended Hückel Hii parameters for valence orbitals of the central and side atom (�Hii). The series
are labeled by the element A in the A2B molecule. For a more detailed description see text. Ar-
bitrarily drawn lines have been introduced to guide an eye to trends for A = F, H, B, Cs.
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Figure 14. Plot of G for a series of A2B linear symmetric molecules plotted versus the difference of ex-
tended Hückel Hii parameters for valence orbitals of the central and side atom (�Hii). The se-
ries is labeled by the element A in the A2B molecule. For a more detailed description see text.
Arbitrarily drawn lines have been introduced to guide an eye to trends for A = C, Li.



We think most of the trends are there in the EH model. A typical ku vs. � Hii de-
pendence has usually a maximum at certain � Hii (ku here has been computed by
DFT). This is similar to the G vs. � EN dependence, which we have discussed in a pre-
vious section (see Fig. 1). It is also similar to the G vs. � Hii dependence (Fig. 14).
Finally, this might also correspond to a small maximum observed at � Hii � –12 eV in
the ku vs. � Hii dependence as calculated by EH (Fig. 12).

The most vibronically unstable species usually occur for the most positive values
of � Hii available for a given element A in an A2B molecule (DFT result, Fig. 13). This
is again very similar to the EH prediction (Fig. 12). The only exception from this rule
is found for molecules containing typical metals such as alkalis. It is exemplified in
Fig. 13 by the ku vs. � Hii dependence for Cs-containing species. The largest vibronic
coupling (although not yet instability) is observed for Cs-containing intermetallics.
How can we explain this discrepancy between DFT results and EH results in a simple
qualitative way? We have to note that intermetallics have usually very small �g/�u and
�u/� g

* gaps, in contrast to Cs-containing “salts”. It seems that EH does not properly
account for this class.

EH predicts a larger instability of ABA molecules relative to BAB molecules,
where B is the more electronegative element. This is in good agreement with DFT re-
sults. EH also indicates a greater instability of molecules with shorter bonds. Indeed,
DFT results show that molecules with large f (hence, often with short bonds, see Eq. 2)
are the most vibronically unstable.

Summarizing this section, we think that on balance the extended Hückel � Hii is
of value in understanding qualitatively vibronic effects.

2.2. Vibronic Coupling and Molecular Hardness.

So far we have been studying quantitatively ABA molecules at a B3LYP/6-
311++G** level of density functional theory. However, our qualitative explanatory
approach was based on the EH method. It is interesting next to look qualitatively at
vibronic coupling in triatomics within the DFT formalism. We will investigate partic-
ularly the relationship between the molecular hardness � and the vibronic stability pa-
rameter G.

In the very useful conception of Parr and Pearson, the hardness � [46,47] is de-
fined in a consistent quantum mechanical way within density functional theory
framework. Can we relate the results of our DFT calculations for particular molecules
with �?

We have chosen H2E and E3 molecules as a subject of this study (E = F, Cl, Br, I,
Li, Na, K, Rb, Cs). These 18 molecules range from highly unstable species, such as F3

or H2F, to very stable ones, such as Cs3 or Li2F. The approximate molecular hardness
of E3 and H2E molecules has been calculated here as the weighted average of atomic
hardnesses. Atomic hardness values were taken from [47].

Figure 15 plots the vibronic stability parameter G as a function of molecular hard-
ness � for H2E and E3 families of triatomics.
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A relationship between G and � seems to exist within each of the two families of
molecules examined. Usually, the larger the �, the more negative the G, and the more
unstable the molecule. The most negative values of G are always computed for the
molecule with the largest � within a given family [48].

Thus our simple theoretical studies point to a strategy for increasing vibronic in-
stability:
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i) Molecular systems built of the hard Lewis acids and Lewis bases will usually ex-
hibit large vibronic instability.

ii) Small molecules with low-lying contracted orbitals will usually exhibit sub-
stantial vibronic instability.

Of course, these are necessary, but not sufficient conditions for strong vibronic
coupling (for example LiF2 is vibronically stable, although it is built of pretty hard
Lewis acids and bases). As we have learned elsewhere, substantial covalency (at best
such orbitals matching, which provides a covalent-to-ionic curve crossing – see sec-
tion 2.5) is also necessary for strong vibronic instability to occur.

We notice that conclusions i) and ii) agree well with computational (DFT) data
presented in section 1.1. Interesting complementary results, buttressing our conclu-
sions on the influence of softness and hardness, have been also obtained from study-
ing the influence of a basis set choice on the vibronic stability (see Appendix B). This
leaves us hope that vibronic effects, of a complex quantum-mechanical nature, may
be relatively easily translated into chemical concepts. The parameter f used by us in
this paper may be linked to chemical hardness, and such attempts are in progress [49].

Let us now turn to the relation of vibronic stability of A2B molecules to the phe-
nomenon of electron–rich bonding or hypervalence.

2.3. Vibronic Coupling and Hypervalence.

From a formal point of view, linear symmetric ABA� molecules show three-
center three-electron bonding. This feature locates them half way between the elec-
tron-poor A2B

+ molecules and electron-rich A2B
– ones (of the I3


 type). The latter are
characterized by four-electron three-center bonding and are typical hypervalent spe-
cies [50]. In sections 2.1–2.2 we have tried to understand the factors governing the
vibronic stability of ABA� species. Now we would like to explore the hypervalence
motif a little deeper.

A typical problem that we face dealing with a “fully” hypervalent system (e.g. I 3

 )

is: will the system preserve symmetry (I--I--I–), or will it become unsymmetrical
(I–������I–I) [51]? This problem is very similar to one we studied for ABA� species (e.g.
such as I3

0 ). And our previous experiences with vibronic stability – although initially
inspired by the relevance of vibronic effects to superconductivity, might help us un-
derstand the factors influencing tendencies of “fully” hypervalent or electron–rich
species towards asymmetrization.

We will use again the linear symmetric H3 system as a simple model, concentrat-
ing on three species: H3


 , H3
0 and H3


 . These serve us as models for electron-rich, neu-
tral and electron-deficient molecules. Fig. 16 shows the energy levels in H3


 , H3
0 and

H3

 molecules as calculated at the B3LYP/6-311++G** level of theory [52].

As may be seen from Fig. 16, the vibronic stability of H3

 , H3

0 and H3

 molecules

differs substantially. Instability increases in the order: H3

 � H3

0 � H3

 ; H3


 is stable
along Qas [53]. What are the most important reasons for these differences?
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Let us recall here Fig. 9, the simple EH model. The stabilization energy in H3
0

asymmetrization comes mainly from the energy decrease of �g, and somewhat less so,
�u. Hence, we can easily deduce that vibronic instability should indeed increase in or-
der: H3


 � H3
0 � H�


 due to occupation of �u by, respectively, zero, one and two
electrons. An additional reason for the largest susceptibility of H3


 towards asym-
metrization is clear from the MO scheme given in Fig. 16. One can see that both �g/�u

1632 W. Grochala and R. Hoffmann

8.98 eV

11.70 eV

7.07 eV

7.34 eV

ku = +10.1
mDynes/Å

ku = 
0.3
mDynes/Å

ku = 
0.9
mDynes/Å

3.26 eV

5.71 eV

(H3)
q

q = +1 q = 0 q = 
1
R=0.82 Å R=0.93 Å R=1.06 Å

Figure 16. Energy levels in the linear symmetric H3

 , H3

0and H3

 molecules as calculated at the B3LYP/6-

311++G** level of theory. Optimized bond lengths R /Å and force constants for the asym-
metric stretch ku are given. The vertical scale is schematic.

R = 0.82 Å R = 0.93 Å R = 1.06 Å



and �u/� g
* gaps decrease strongly with increase of negative charge on H3 skeleton.

This means – as a perturbation theoretic approach tells us – that vibronic second order
effects will be strongest in the H3


 case.
The instability order H3

+ < H3
0 < H3


 we have obtained and understood for H3 spe-
cies might be transformed into a more general proposition: electron rich molecules
will be more unstable towards asymmetrization than the corresponding electron-
deficient molecules. Unfortunately, this simple rule is not generally valid. Consider
for example the F3

+ � F3
0 � F3


 series. F3
0 is unsymmetrical, while there is strong theo-

retical and experimental evidence that a linear F3

 molecule is symmetric [54]. How

could one explain this?
We tend to think about relative stability of linear symmetric F3


 molecule in terms
of s-p mixing. Although s-p mixing will be the subject of the next section, let us
shortly explain its role here (see Figs. 17 and 18 for details). For F3


 s-p mixing shows
up through a nonzero contribution of a 2s orbital to SOMO. This makes SOMO
antibonding with respect to neighboring F atoms. Subsequently, symmetric elonga-
tion of the F–F bonds will be driven by a greater force in F3


 as compared to F3
0 . Having

in mind the general rule that G is more negative for shorter bonds, we might qualita-
tively understand the stability trend in the F3 series. The more diffuse character of F3




orbitals (as compared to F3
0 ) and the larger polarizability also contribute to the

symmetrization of the F3

 molecule.

2.4. Hybridization, s-p Mixing and Vibronic Coupling.

To understand the interplay of hybridization and s-p mixing in vibronic effects we
will use again a simple model based on EH considerations. We analyze the vibronic
stability of a linear symmetric F3 molecule, varying the extended Hückel Hii of the 2s
orbital of the central F atom (the Hii of the 2p orbital remains constant). This way we
will “steer” the s-orbital contribution to the three center bond orbitals and pass contin-
uously from a 3 AO scheme (three 2p orbitals [55]) to a 4 AO one (one 2s and three 2p
orbitals). Fig. 17 shows the calculated plot of ku versus the difference of Hii between
the 2s and 2p orbital of the central F atom (� Hii (sp)). Negative � Hii (sp) means that
2s orbital is below the 2p one.

The shape of the ku versus � Hii (sp) dependence is very interesting. Apparently,
there is a huge vibronic stability decrease in the region of strong s-p mixing. Interest-
ingly, the largest instability is observed for � Hii (sp) � 2 and not for � Hii (sp) = 0. Of
course, the region of positive � Hii (sp) corresponds to a very unphysical situation (s
orbital above p) and we do not pay much attention to it. We are doing these numerical
experiments not to model a real molecule, but as a kind of laboratory to turn on s,p
mixing, spanning the range from little mixing to much.

In the reasonable range of negative � Hii (sp), the important results is that the
smaller the s-p gap, the larger the vibronic instability.
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We will now use a MO picture to explain the trend observed in Fig. 17.
The three-center system built of p orbitals at each atom (and interacting s orbitals)

is a little different than the previously studied three s orbital system, so some intro-
duction is needed. Fig. 18 shows the relevant orbitals before s-p mixing [56].
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Note that the SOMO is now �g in symmetry (and not �u as in the three s orbital
case we studied earlier). The s orbital at the central atom has the same �g symmetry.
The MO diagram is instructive for it tells us that the two �g orbitals (the low lying s
and the SOMO) must interact, as long as there is any overlap between them. The net
result will be a “repulsion” of the orbitals, the lower one will be Fcenter/ Fright and Fcenter/ Fleft

bonding, the upper antibonding. This is why we label them even here as �g and � g
* .
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Fig. 19 shows the evolution of the �-block of MOs in the vicinity of the SOMO for
the linear symmetric F3 molecule, as the extended Hückel Hii for the 2s orbital of the
central F atom is varied.

Analyzing Fig.19, we find the reasons for a strong dependence of the vibronic sta-
bility on the s-p mixing. Our analysis takes into account only the four � orbitals in the
vicinity of SOMO contributing substantially to the vibronic coupling along Qas: �g,
�u, � g

* , � u
* (see Fig. 18). The �-block of MOs does not mix with the s orbital of Fcenter

due to symmetry [57]. Moreover, the contribution from the � orbitals (mixing them-
selves within � block) to the total vibronic coupling along Qas is much smaller than
that from �.

It is clear from Fig. 19 that sp-hybridization plays important role in the vibronic
coupling: admixture of the s orbital of Fcenter into� g

* increases significantly the energy
changes associated with asymmetrization. The reasons for this in the case of F3 are the
following:

i) the 2s orbital of Fcenter mixes into SOMO (� g
* ) in an antibonding way;

ii) following such mixing, the energy gap between� g
* and� u

* decreases, and the
contribution of the s orbital of Fcenter to � g

* increases. This, in turn, enables
more efficient� g

* /� u
* mixing after symmetry breaking (recall that such mixing

is turned on for Qas � 0);
iii) asymmetrization effectively creates sp hybrids at Fcenter.
Hence, the sp-mixing increases strongly the vibronic coupling in the � Hii (sp) < 0

region. The more distant (in energy) the lower-lying (occupied) 2s orbitals from the �
2p orbitals, the larger the vibronic stability. This finding is in general agreement with
what is known of the influence of s-p mixing on vibronic stability in many extended
structures [58].

Let us now investigate the relationship of the s-p mixing to “ionic/covalent”
curve crossing, and analyze the importance of the latter for vibronic coupling.

2.5. Avoided “Ionic/Covalent” Curve Crossing and the Vibronic Coupling.

The results presented in the previous section may also be interpreted using a lan-
guage of ionic/covalent curve crossing.

It is clear from Fig. 19 that a “repulsion” of the �g orbitals occurs in the pseudo–F3

molecule as the extended Hückel Hii of the 2s orbital of the central F atom is varied
(Hii of the 2p orbital remains constant). This is emphasized by dotted curves in Fig.
19a. Both �g orbitals significantly change their character as a result. The lower energy
�g orbital is dominated by a 2s contribution of the central F atom for � Hii (sp) = –7 eV,
and by a 2p contribution of the side F atoms for � Hii (sp) = +7 eV. The reverse is true
for the higher energy � g

* orbital. Clearly, a kind of curve crossing has taken place in
this system.

We emphasize again that the region with 2s close to and especially above 2p is
unphysical. Nevertheless, variation of the 2s-2p energy difference over a large range
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Figure 19b. Evolution of the MOs of the linear symmetric F3 system upon varying the extended Hückel
Hii parameter for the 2s orbital of the central F atom. The cases shown are for a 2s–2p gap
(� Hii (sp)) of –7 eV, 0 eV and +7 eV.
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is a useful way to tune s,p mixing. And this is what different elements in the periodic
table do – vary the ns-np energy difference, even if ns is never above np.

Let us elaborate our argument for saying a curve crossing has taken place. Varia-
tion of the extended Hückel Hii of the 2s orbital of the central F atom influences the
electronegativity of the central F atom. The computed Mulliken charge on the central
F atom is +0.30 e for � Hii (sp) = –7 eV, and as much as +1.51e for � Hii (sp) = +7 eV. It
is a typical feature of the 4-electron hypervalent AAA systems that the central atom is
positively charged relative to the end atoms [59]. A chemist is likely to assign elec-
tron occupation in the F–F–F system as:

s2p5, s2p5, s2p5 or F0–F0–F0 for � Hii (sp) = –7 eV (5)

and

s2p6, s0p3, s2p6 or F–1–F+2–F–1 for � Hii (sp) = +7 eV (6)

In other words, the “forbidden curve crossing” has the character of a “cova-
lent–to–ionic transition“! And it enormously influences the vibronic stability of a
molecule, as we have seen.

At this point two interesting and important theoretical contributions to the litera-
ture come to mind. In these the authors link the superconductivity phenomenon in the
solid state either to “sudden polarization as a result of small geometrical distortion”
(hypothetical organic superconductors, Salem 1966) [60], or directly to “ionic/cova-
lent curve crossing” (oxocuprate materials, Burdett 1993) [2s].

In particular, Burdett discussed in some detail the possible influence of the
“ionic/covalent curve crossing” on the “magic electronic state” in oxocuprate super-
conductors. He postulated that there are huge variations of the wavefunction with
Cu–O distance in the “ionic/covalent curve crossing” region:

Cu3+ + O2– � Cu2+� + O–� (7)

We feel that Burdett’s hypothesis is of a particular importance for theoretical
studies of the electronic structure of superconducting materials. The existence of a
curve crossing region might lead to large variations in the nature of the computed
wavefunction for the system, which might be forced towards either “ionic” or “cova-
lent” configurations.

We have computed the vibronic stability of a symmetric linear [Cu3+–O2––Cu2+]�

species along an antisymmetric stretching coordinate, using EH. We have varied Hii

for the p orbital of the central O atom in a broad energy range so to model avoided
crossing with Cu(d) orbitals; the procedure (and purpose) is analogous then to that
applied for a pseudo-F3 model. Varying O(p) orbital energy allows us tune Cu(d)/O(p)
orbital mixing. Such mixing is known to occur in oxocuprate materials, and certainly
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depends on the oxidation state of Cu. Strong increase in vibronic instability has been
computed in the vicinity of the crossing region, as compared to the region where
Cu(d)/O(p) mixing is small. While the increase was not as steep a function of Hii as for
the pseudo-F3 molecule, yet the essence of the phenomenon was preserved.

Burdett’s and Salem ideas can be transferred to the BCS theory of superconduc-
tivity [61]. States below and above the Fermi level, which are coupled in pairs
through an optical phonon, are now in the “forbidden curve crossing region”, and
their coupling increases significantly. In this paper we have argued that “ionic/cova-
lent curve crossing” dramatically influences the vibronic stability of a molecule [62].
An analogue of Burdett’s idea thus is found for triatomic molecules, even at the ex-
tended Hückel level [63].

2.6. Vibronic Coupling and Resonance Structures.

Consider another approach to vibronic coupling. Let us think in terms of reso-
nance structures, an archetypical concept in chemical language. Lines in resonance
structures symbolize spin–coupled electron pairs localized in bonds or in lone pairs.
Resonance structures are a classic tool that chemists use to describe qualitatively the
electron distribution of molecules. Valence bond theory, in which the “resonance
structures” terminology originates, also is the basis of a curve–crossing model [64].
Resonance structures and valence bond configurational thinking has been very suc-
cessfully applied by Shaik and coworkers to studies of dynamics of the chemical reac-
tions and properties of transition states. The quantitative approach presented in [64]
allows a beautiful connection to be made between a singlet-triplet gap in A2 diatomics
and the gap between “repulsive” potential energy curves of symmetric A3 triatomics.
Inclusion of a low lying ligand-to-metal charge-transfer state increases the stability
of a symmetric (“ionic”) transition state and lowers the energy barrier for an A + BA
� AB + A reaction.

We think that the studies of Shaik and coworkers are very much relevant to the de-
scription of systems exhibiting large vibronic coupling. It also becomes clear now
why large vibronic coupling in T1 states of interhalogen AB molecules [4] is likely to
imply strong vibronic instabilities in interhalogen ABA open-shell systems [5].

CONCLUSIONS

We have concentrated our attention on the off-diagonal vibronic coupling. We
have examined off-diagonal vibronic coupling in symmetric linear triatomic A2B
open-shell molecules, for the antisymmetric stretching mode. The triatomic A2B
molecules are usually classified into two groups: mixed-valence (MV) and interme-
diate-valence (IV) (using criteria of static/dynamic nonequal/equal charge distribu-
tion on two centers A), and they are ideal for studying vibronic coupling.

The vibronic stability of ABA molecules (as measured by the force constant of
the antisymmetric stretching mode, ku, as well as the “antisymmetric mode softening
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parameter” G) has been studied. G is defined as the ratio of antisymmetric to symmet-
ric stretching force constant; it is a very sensitive indicator of vibronic coupling. In
this paper the range of A, B is very wide – element B originated from s, p, and A from
s, p and d-blocks of the periodic table.

We have constructed maps of G in a space of two parameters: the difference of the
Pauling electronegativity of A and B elements constituting A2B molecule and the sum
of the Pauling electronegativity for A and B. Alternatively, we have used the parame-
ter f (f is defined as sum of electronegativities divided by AB bond length) instead of
the sum of electronegativities. Our maps show that there exists a region of strong
vibronic instability of A2B molecules. This is observed for large values of f which are
characteristic for small ABA molecules built of two nonmetallic p-block elements.
ABA molecules containing a d-block element A are usually more vibronically stable
than analogous molecules containing a p-block A element of same electronegativity.

Another interesting result of relevance to the vibrational spectra of A2B mole-
cules (see Appendix A) has been obtained: it appears that f correlates with the force
constant for the symmetric stretching mode in certain families of linear symmetric
triatomics.

Trying to rationalize the trends observed for h eg
i in the space of certain “chemical”

parameters, we constructed simple MO models, based on EH and DFT computations.
We discuss h eg

i in A2B molecules in relevance to hypervalence, s-p mixing, “ionic/co-
valent curve crossing”, and the hardness/softness of Lewis acids/bases. The most im-
portant general conclusions are the following:

i) Molecular systems built of hard Lewis acids/bases should be vibronically
more unstable than systems built of soft Lewis acids/bases [65].

ii) The more pronounced s-p mixing, the larger the vibronic instability.
iii) An “ionic/covalent curve crossing” significantly increases the vibronic insta-

bility of a molecule.
Vibronic instability may be significant (i.e. may lead to geometrical instability of

symmetrical molecular systems, with consequences for various observables) even for
molecules with large energy gaps of about 10–15 eV (as in the case of the ammonia in-
version [18]). The vibronic effects are most significant when states mixed (which are
not necessarily nearest in energy) involve strongly bonding or antibonding orbitals

(bonds are strongly weakened and/or strengthened during the molecular vibration). It
is also known that vibronic effects are extremely important in both “classical” BCS
[1] and high-temperature superconductivity [2]. In this paper we tried to show what
might be the conditions for large vibronic instability [66].

Our theoretical findings may be important in the experimental search for new
superconducting materials in solid state. It is still a long way from simple physical
models and quantum mechanical computations for small molecules to the complex
behavior of solids due to their collective electronic / magnetic phenomena. We will
try to come part of this way in our next paper [5].
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Appendix A

Utility of f for Predicting kg.
The qualitative correlation of parameter f with the force constant for the symmetric stretching mode

(kg) was discovered by us previously, for three families of ABA� triatomics: intermetallics, interhalogens
and salts [5,67]. We may elaborate a quantitative approach, based on the extensive calculations of this pa-
per. Fig. 20 presents the plot of �kg versus parameter f for about 100 previously studied AB2

� molecules [5].
There is a good monotonic correlation between �kg and f. The least square linear relationship found

is: �kg = 0.344 f + 0.166, with correlation coefficient R2 = 0.909. Thus f correlates sufficiently well with
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the square root of the second derivative of the potential energy (i.e. force constant) [28]. We obtained also
a good �kg vs f correlation for all 460 molecules studied in this paper (including those containing transi-
tion metal atoms). Note that f also correlates well with the first derivative of the potential energy (i.e.
force) in certain families of diatomics [4]. It is impressive to us that a simple empirical parameter corre-
lates so well with the results of complex quantum mechanical computations [68]. We think that f will
prove useful for analyzing other molecular features as well.

Appendix B

Basis Set Effects in Vibronic Coupling – a DFT Picture.
There is another, indirect way to look at the role of softness and hardness in affecting vibronic stabil-

ity. Let’s look at the influence of the basis set on the vibronic stability parameter G. We have chosen H2Cl
as a subject of this study.

Adding polarization and diffuse function to the basis set on one hand is just an applied mathematical
procedure to get a more accurate solution of the wave equation. But, we think that there is something phys-
ical and chemical to be learned from the effects of polarization and diffusion functions. Such basis set
functions are especially important for systems with diffuse or low lying unoccupied orbitals. Electrons in
such systems are usually easily polarizable and weakly bound. We think that one way to judge that a sys-
tem is “hard” is if little addition of polarization and diffuse function to the basis set is necessary to de-
scribe it properly.

In Table 1 we list optimized bond length R0, force constants for symmetric (kg) and antisymmetric
(ku) stretching modes and vibronic stability parameter G for H2Cl as computed at B3LYP level with differ-
ent basis sets.

Table 1. Influence of the basis set choice on the optimized bond length R0, force constants for symmetric (kg)
and antisymmetric (ku) stretching modes and vibronic stability parameter G for H2Cl as computed at
DFT/B3LYP level.

basis set R0/Å ku/mdyne Å–1 kg/mdyne Å–1
G/1

6-311++G** 1.50 –0.90 1.99 –0.45

6-31++G** 1.50 –0.91 1.99 –0.46

6-31+G** 1.50 –0.92 1.99 –0.47

6-31G** 1.50 –0.91 2.00 –0.45

6-31G* 1.51 –1.01 1.87 –0.54

6-31G 1.56 –0.96 1.64 –0.59

6-21G* 1.51 –1.05 1.82 –0.58

6-21G 1.57 –0.98 1.56 –0.63

4-31G* 1.52 –1.15 1.76 –0.65

4-31G 1.57 –0.98 1.58 –0.62

3-21G* 1.51 –1.08 1.76 –0.62

3-21G 1.57 –1.00 1.52 –0.66

It may be immediately seen from Table 1 that basis set choice has a small effect on the optimized
bond length, but a substantial one on the parameter G for the symmetric linear H2Cl molecule. We ob-
tained the largest vibronic instability (G = –0.66) with the smallest basis set (3-21G), and the smallest
vibronic instability (G = –0.45) with the largest basis set (6-311++G**). G increases upon inclusion of
polarization functions (6-31G � 6-31G* � 6-31G**). The same is true for other families of basis sets.
Apparently, progressive addition of polarization functions results in a decrease of the vibronic instability.
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How G varies upon addition of diffuse functions is not very clear, nor as significant in the case of
H2Cl as for polarization functions. For basis sets: 6-31G**, 6-31+G**, and 6-31++G** we obtain G equal
to –0.45, –0.47, and –0.46, respectively. The vibronic stability (G) changes only slightly upon progressive
addition of diffuse functions.

The influence of the basis on computed G is substantial; the ratio of the smallest and the largest com-
puted G value is large (~150%). Of course, linear H2Cl is strongly vibronically unstable, so even a basis
set that is too small does not result in a qualitative error (for all basis sets G << 0). However, one may eas-
ily imagine cases for G � 0, when an improper choice of basis might be the source of serious qualitative
(stability or instability?) error.

We suggest that vibronic coupling is likely to be large in systems built of atoms for which addition of
polarization and diffuse function to the basis set only slightly influences the computed vibronic stability
parameters (i.e. of small, weakly polarizable atoms). Results of the above study may be thus nicely related
to conclusions from section 2.2.

REFERENCES

1. Bardeen J., Cooper L.N. and Schrieffer J.R., Phys. Rev., 108, 175 (1957).
2. On the importance of vibronic effects (and generally: lattice–electron coupling) for superconductivity

see: (I) oxocuprates: (a) Alexandrov A.S. and Edwards P.P., Physica C, 331, 97 (2000), and references
therein. (b) Burdett J.K. and Kulkarni G.V., Phys. Rev. B, 40, 8908 (1989). (c) Jarlborg T., Solid State

Commun., 67, 297 (1988). (II) oxobismuthates: (d) Meregalli V. and Savrasov S.Y., Phys. Rev. B, 57,
14453 (1998). (e) Navarro O. and Chavira E., Physica C, 282–287, 1825 (1997). (f) Shirai M., Suzuki N.
and Motizuki K., J. Phys.: Condens. Matter., 2, 3553 (1990). (III) fullerides: (g) Schluter M., Lanoo M.,
Needels M., Baraff G.A. and Tomanek D., Phys. Rev. Lett., 68, 526 (1992). (h) Jishi R.A. and
Dresselhaus M.S., Phys. Rev. B, 45, 2579 (1992). (i) Novikov D.L., Gubanov V.A. and Freeman A.J.,
Physica C, 191, 399 (1992). (j) Kresin V.Z., Phys. Rev. B, 46, 14883 (1992). (k) Asai Y. and Kawaguchi
Y., Phys. Rev. B, 46, 1265 (1992). (l) Rai R., Z. Phys. B, 99, 327 (1996). (IV) silicide clathrates: (m)
Yoshizawa K., Kato T. and Yamabe T., J. Chem. Phys., 108, 7637 (1998). (n) Yoshizawa K., Kato T.,
Tachibana M. and Yamabe T, J. Phys. Chem. A, 102, 10113 (1998). (V) borocarbides: (o) Gompf F.,
Reichardt W., Schober H., Renker B. and Buchgeister M., Phys. Rev. B: Condens. Matter., 55, 9058
1997). (VI) mercury fluoroarsenates: (p) Slot J.J.M., Boon M. and Weger M., Solid State Commun., 56,
645 (1985). On accuracy of BCS predictions for different classes of superconductors see: (r) B.
Chakraverty, Ramakrishnan T., Physica C, 282–287, 290 (1997). On the “magic electronic state” in
oxocuprates and its connection to Cu-O bond stretching see: (s) Burdett J.K., Inorg. Chem., 32, 3915
(1993).

3. Part 1, Grochala W., Konecny R. and Hoffmann R., Chem. Phys., 265, 153 (2001).
4. Part 2, Grochala W. and Hoffmann R., New J. Chem., 25, 108 (2001).
5. Part 3, Grochala W. and Hoffmann R., J. Phys. Chem. A, 104, 9740 (2000).
6. In some sense our paper is analogous to the review on periodicity in 120 first- and second-row diatomic

molecules, by Boldyrev A.I., Gonzales N. and Simons J., J. Phys. Chem., 98, 9931 (1994).
7. Part 5, Grochala W., Hoffmann R. and Edwards P.P., manuscript in preparation.
8. Gaussian 94, Revision D.3, Frisch M.J., Trucks G.W., Schlegel H.B., Gill P.M.W., Johnson B.G., Robb

M.A., Cheeseman J.R., Keith T., Petersson G.A., Montgomery J.A., Raghavachari K., Al-Laham M.A.,
Zakrzewski V.G., Ortiz J.V., Foresman J.B., Cioslowski J., Stefanov B.B., Nanayakkara A.,
Challacombe M., Peng C.Y., Ayala P.Y., Chen W., Wong M.W., Andres J.L., Replogle E.S. , Gomperts
R., Martin R.L., Fox D.J., Binkley J.S., Defrees D.J., Baker J., Stewart J.P., Head-Gordon M., Gonzalez
C. and Pople J.A., Gaussian, Inc., Pittsburgh PA, 1995.

9. HyperChem 5.0, Hypercube, Inc. Ltd.
10. Landrum G.A.,”YAEHMOP: Yet Another extended Hückel Molecular Orbital Package.” A package for

performing EH calculations on molecules and extended systems and visualizing the results. (1995)
YAeHMOP is freely available for both Unix workstations and Power Macintosh systems on the WWW
at URL http://overlap.chem.cornell.edu:8080/yaehmop.html.

Chemistry of vibronic coupling... 1643



11. C.A.C.A.O. (Computer Aided Composition of Atomic Orbitals), A Package of Programs for Molecular
Orbital Analysis [PC Beta-Version 5.0 , 1998], Mealli C. and Proserpio D.M., with a major contribution
by Ienco A., J. Chem. Educ., 67, 399 (1990).

12. The reader is referred to several classical texts on vibronic coupling in triatomic and multiatomic mole-
cules, whose importance was brought to our attention by a reviewer: (a) Öpik U. and Pryce M.H.L., Proc.

Roy. Soc. A, 238, 425 (1957); (b) Bader R.F.W., Mol. Phys., 3, 137 (1960); (c) Bader R.F.W., Canad. J.

Chem., 40, 1164 (1962); (d) Köppel H., Domcke W., and Cederbaum L.S., Adv. Chem. Phys., 57, 59
(1984); (e) Bersuker I.B. and Polinger V.Z., Vibronic Interactions in Molecules and Crystals, Springer-
Verlag: Berlin, 1989; (f) Wong K.Y. and Schatz P.N., A Dynamic Model for Mixed-Valence Compounds.
Progress in Inorganic Chemistry, vol. 28; Lippard S.J. Ed.; John Wiley and Sons: NY 1981; p.369; (g)
Bersuker I.B., The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry, Plenum Press: NY
1984. Theoretical models accompanied by calculations of vibronic stability for some “real” organic and
inorganic molecules are presented in these papers.

13. As shown in Table S2 in Supplement, we could not compute 8 of 100 molecules in this family. The rea-
sons for failure varied: problems with convergence, failures of Coulomb series, and density matrix
breaking symmetry problems.

14. As shown in Table S2 in Supplement, we also could not compute 29 of the additional 240 molecules in
this family. The reasons, as mentioned in Ref. 13, varied.

15. (a) Murphy L.R., Meek T.L., Allred A.L. and Allen L.C., J. Phys. Chem. A, 104, 5867 (2000). (b) Cao
C.Z., Li Z.L. and Allen L.C., Chin. J. Inorg. Chem., 15, 218 (2000). On configuration energies, a modern
concept related to electronegativity, see for example: (c) Mann J.B., Meek T.L. and Allen L.C., J. Am.

Chem. Soc., 122, 2780 (2000). (d) Mann J.B., Meek T.L., Knight E.T., Capitani J.F. and Allen L.C., J.

Am. Chem. Soc., 122, 5132 (2000).
16. Pauling L., J. Am. Chem. Soc., 54, 3570 (1932).
17. Luo Y.-R. and Benson S.W., J. Phys. Chem., 94, 914 (1990).
18. Khadikar P.V. and Pandharkar S., Japan. J. Appl. Phys., 27, 2183 (1988).
19. Thomas T.D., J. Am. Chem. Soc., 92, 4184 (1970).
20. Prasad P.L. and Singh S., J. Chem. Phys., 66, 162 (1977).
21. Han W.-P. and Ai M., J. Catalysis, 78, 281 (1982).
22. (a) Van Arkel A.E., Molecules and Crystals in Inorganic Chemistry; Interscience: NY, 1956.

(b) Ketlaar J.A.A., Chemical Constitution, An Introduction to the Theory of the Chemical Bond, 2nd ed.,
Elsevier: NY, 1958.

23. (a) Timoten R.S., Seetula J.A., Niiranen J. and Gutman D., J. Phys. Chem., 95, 4009 (1991). (b) Schaefer
T. and Hutton H.M., Canad. J. Chem., 45, 3153 (1967). (c) Davies A.G., Smith L. and Smith P.J., J.

Organomet. Chem., 23, 135 (1970).
24. (a) Parr R.G. and Pearson R.G., J. Am. Chem. Soc., 150, 7512 (1983). For the maximum hardness princi-

ple, see, for example: (b) Pearson R.G., J. Chem. Educ., 76, 267 (1999).
25. (a) Gázquez J.L, J. Phys. Chem. A, 101, 9464 (1997). (b) Pearson R.G., J. Am. Chem. Soc., 110, 7684

(1988).
26. Mooser E. and Pearson W., Acta Crystallogr., 12, 1015 (1959).
27. Shankar S. and Parr R.G., Proc. Natl. Acad. Sci. USA, 82, 264 (1985).
28. The Pauling electronegativity (PEN) has been used in this paper to compute f. Since PEN has formally

units of square root of energy, f has units of square root of energy per distance. This might explain why a
correlation of f with square root of the force constant (see Fig. 12) is almost linear (square root of force
constant also has square root of energy per distance units). There is another electronegativity definition,
the Mulliken electronegativity (MEN, expressed in energy units). MEN correlates quite well with PEN
for most of elements. f would formally have energy per distance, i.e. force units if one defined f using
MEN. Note that we obtained a strongly nonlinear correlation between f and force in Ref. 4.

29. Pearson R.G., J. Molec. Struct., 300, 519 (1993).
30. As far as we know, there is no experimental data available for the symmetric linear radicals investigated

in this paper. Such radicals are often not bound, and dissociate to a diatomic and an isolated atom. The
species studied here might also be intermediates or transition states between two asymmetric linear, or
two symmetric bent minima (these minima would correspond to “real” ground state molecules). Our
study is not intended to predict the geometry of molecular radicals, but to discern trends in vibronic cou-
pling.

1644 W. Grochala and R. Hoffmann



31. Dissociation of symmetric linear triatomic proceeds along a combination of antisymmetric and symmet-
ric stretching coordinates. In this paper we study the potential energy surface of a triatomic along an
antisymmetric stretching coordinate, with symmetric stretching coordinate optimized and then frozen.

32. This study does not include closed–shell linear symmetric triatomics, such as e.g. CO2. The presence of
an unpaired electron in the species studied here usually results in strong vibronic coupling in these sys-
tems, in contrast to the closed–shell ones.

33. An unequal distribution of points in the ABA and BAB regions contributes partially to the left-right
asymmetry of Fig. 3, but is not its main cause.

34. It has to be mentioned that kg for all triatomics investigated in this paper also correlates very well with f.
35. Haddon R.C., Acc. Chem. Res., 25, 127 (1992).
36. (a) Mattheiss L.F. and Hamann D.R., Phys. Rev. Lett., 60, 2681 (1988). (b) Cava R.J., Batlogg B.,

Krajewski J.J., Farrow R., Rupp L.W., White A.E., Short K., Peck W.F. and Kometani T., Nature, 332,
814 (1988).

37. Bednorz J.G. and Müller K.A., Z. Phys. B, 64, 189 (1986).
38. Yamanaka S., Hotehama K. and Kawaji H., Nature, 392, 580 (1998).
39. As Table S2 details, we could not compute properly 24 among 120 molecules in this group.
40. The only exception is Ir2Li, which surprisingly is computed to be vibronically unstable.
41. Bally T. and Borden W.T., Calculations on Open-Shell Molecules: A Beginner’s Guide, Rev. Comput.

Chem., vol. 13, Lipkowitz K.B., Boyd D.B., Eds.; John Wiley and Sons: NY, 1999, p.1.
42. The difference of extended Hückel Hii between 5s of Cs and 2p of F is about 15 eV, except F bonding is

mainly through 2p.
43. Hoffmann R., Acc. Chem. Res., 4, 1 (1971).
44. A general perturbation theory for a one–electron LCAO-MO method, including change of the overlap

integrals, has been developed by Imamura (Imamura A., Mol. Phys., 15, 225 (1968)).
45. We will discuss this point further in Ref. 7.
46. Parr R.G. and Pearson R.G., J. Am. Chem. Soc., 105, 1503 (1983).
47. Pearson R.G., Inorg. Chem., 27, 734 (1988).
48. We note that our results agree well with recent data on vibronic stability of planar triangular closed-shell

AX3 molecules (A = N to Bi, X = H, F to I): (a) Atanasov M. and Reinen D., J. Phys. Chem. A, 105, 5450
(2001); (b) 15th International Jahn-Teller Symposium “Vibronic Interactions in Crystals and Molecules”,
Boston, 2000, Atanasov M. and Reinen D., Chem. Eur. J., submitted. The authors conclude that the hard-
est molecules are the most susceptible to vibronic coupling (hardness is used by them in the chemical
sense of Pearson’s hardness �).

49. Ayers P.W. and Parr R.G., personal communication, 2000.
50. Some people see red when “hypervalence” is mentioned. We find this term to be heuristically useful and

use it interchangeably with three–center four–electron bonding.
51. (a) Feretti V., Gilli P., Bertolasi V. and Gilli G., Crystallogr. Rev., 5, 3 (1996); (b) Bürgi H.-B. and Dunitz J.D.,

Eds. Structure Correlation, vol. 1; VCH: Weinheim, 1994; (c) Akiba K., Chemistry of Hypervalent Com-

pounds; Wiley – VCH: NY, 1999, Chapter 1; (d) Musher J.I., Angew. Chem. Int. Ed. Engl., 8, 54 (1969).
52. A formal negative sign has been introduced for the force constant if the corresponding computed fre-

quency is imaginary.
53. Of course, H3

+ wants to be triangular. But in the spirit of our studies we keep it linear here.
54. (a) Cahill P.A., Dykstra C.E. and Martin J.C., J. Am. Chem. Soc., 107, 6359 (1985). (b) Novoa J.J., Mota

F. and Alvarez S., J. Phys. Chem., 92, 6561 (1988). (c) Ault B.S., Andrews L., Inorg. Chem., 16, 2024
(1977). (d) Landrum G.A., Goldberg N. and Hoffmann R., J. Chem. Soc., Dalton Trans., 3605 (1997).

55. We use here an approximate (three p orbitals) instead of a more correct picture (three p orbitals + two s
orbitals at Fleft and Fright), since the s–p mixing at Fleft and Fright is relatively small, and not relevant to our
discussion.

56. There is some s-p mixing at the terminal F’s, which “shapes” these orbitals a little.
57. The s orbital of central F atom does contribute to the vibronic coupling along the normal coordinate for

bending, however.
58. (a) Papoian G. and Hoffmann R., Angew. Chem. Int. Ed., 39, 2408 (2000); (b) Ienco A, Hoffmann R. and

Papoian G., J. Am. Chem. Soc., submitted.
59. This might be the reason why the “negative peak” in Fig. 13 does not occur for �Hii (sp) = 0, but for some

positive value of �Hii (sp).

Chemistry of vibronic coupling... 1645



60. Salem L., Molec. Phys., 11, 499 (1966).
61. It is significant that avoided crossing seems to be important for such different superconducting materials

as samarium sulphide, SmS (Varma C.M., Rev. Mod. Phys., 48, 218 (1976)) and oxocuprates (Ref. 2s).
Independent calculations confirm the hypothesis of dual character of the wavefunction for oxobis-
muthates, as well (Pyper N.C. and Edwards P.P., in: Polarons and Bipolarons in High-TC Superconduc-
tors and Related Materials, ed. by Salje E.K.H, Alexandrov A.S. and Liang W.Y., Cambridge University
Press, Cambridge 1995).

62. One should consider in a more rigorous approach also nonadiabatic corrections, which are important in
the vicinity of curve–crossing region.

63. Of course, the model used by us to simulate “ionic/covalent curve crossing” may be substituted by other
approaches. A rigorous model for an ABA triatomic should show how the “ionic/covalent curve cross-
ing” along the symmetric stretching coordinate influences the vibronic stability along the antisymmetric
stretching coordinate.

64. (a) Shaik S.S. and Shurki A., Angew. Chem. Int. Ed., 38, 586 (1999). (b) Maitre P., Hiberty P.C.,
Ohanessian G. and Shaik S.S., J. Phys. Chem., 94, 4089 (1990).

65. Large vibronic instability for systems with deep lying, contracted orbitals suggests the potential utility of
a Hamilton population analysis (HP) for analysis of vibronic coupling (see for example HP vs Hii de-
pendence in: Glassey W.V. and Hoffmann R., J. Chem. Phys., 113, 1698 (2000).

66. From both computations and theoretical models we know how to reach the goal of large vibronic cou-
pling. However, there is a limit to the extent and significance of large vibronic coupling. This limit is de-
termined by the thermodynamic stability of a molecule toward asymmetric dissociation. If the coupling
is so large that it leads to an ABA molecule’s dissociation (such dissociation proceeds along a combina-
tion of antisymmetric and symmetric stretching coordinates), then that coupling in a way has no real
physical importance. A linear symmetric structure (the point at which G is determined) is then too far
away from any real equilibrium geometry. Hence, “prodissociative”, enormously large coupling con-
stants might not be useful in pointing to molecules which may have interesting properties.

67. The increase of the experimental force constants in the order I2 < Br2 < Cl2 < F2, Rb2 < K2 < Na2 < Li2, and
HI < HBr < HCl < HF, has been noted, and an interesting correlation of the force constants with dissocia-
tion energies has been introduced (Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordi-
nation Compounds, 3rd Ed., John Wiley and Sons: NY, Chichester, Brisbane, Toronto, 1978).

68. We have made some progress toward a physical justification of the use of f; this work will be published
elsewhere.

Supplement – Tables

Table S1. Calculated geometric, vibrational and vibronic parameters for linear ABA� molecules where A, B
= s, p – block element: optimized A–B bond length (R0/Å), force constant for the symmetric
(kg/mDyne Å–1) and antisymmetric stretching (ku/mDyne Å–1), and vibronic stability parameter
(G/1). Sum and difference of electronegativities between A and B (ENA + ENB, and � EN, respec-
tively), parameter f [arb.u.], difference of Hückel parameters for A and B valence orbitals (�
EHückel/eV), and �kg (arb.u.) are also shown. Molecules are grouped following main groups of the
periodic table. Negative values of ku and G indicate imaginary frequency for antisymmetric stretch.

molecule � EN ENA + ENB R0/Å
kg/mDyne

Å–1
ku/mDyne

Å–1 G/1
f/

arb.u.
�EHückel/

eV
�kg/

arb.u

Group 1

H2F 1.9 6.1 1.149 2.562 –3.354 –1.31 5.31 4.5 1.60

H2Cl 0.9 5.1 1.500 1.991 –0.901 –0.45 3.40 0.6 1.41

H2Br 0.7 4.9 1.664 1.582 –0.747 –0.47 2.94 –0.5 1.26

H2l 0.4 4.6 1.809 1.410 –0.291 –0.26 2.54 –0.9 1.19
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Table S1 (continuation)

H3 0.0 4.2 0.931 2.510 –0.322 –0.13 4.51 0.0 1.58

H2Li –1.1 3.1 1.763 0.479 0.501 1.05 1.76 –8.2 0.69

H2Na –1.2 3.0 2.012 0.450 0.452 1.00 1.49 –8.5 0.67

H2K –1.2 3.0 2.434 0.298 0.313 1.05 1.23 –9.26 0.55

H2Rb –1.3 2.9 2.608 0.275 0.282 1.03 1.11 –9.42 0.52

H2Cs –1.4 2.8 2.799 0.245 0.259 1.06 1.00 –9.72 0.49

Li2F 3.0 5.0 1.682 1.366 2.714 1.99 2.97 12.7 1.17

Li2Cl 2.0 4.0 2.158 0.792 1.134 1.43 1.85 8.8 0.89

Li2Br 1.8 3.8 2.338 0.646 0.680 1.05 1.63 7.7 0.80

Li2I 1.5 3.5 2.562 0.512 0.455 0.89 1.37 7.3 0.72

Li2H 1.1 3.1 1.574 0.932 2.242 2.41 1.97 8.2 0.97

Li3 0.0 2.0 2.885 0.159 0.367 2.31 0.69 0.0 0.40

Li2Na –0.1 1.9 3.090 0.131 0.199 1.52 0.61 –0.3 0.36

Li2K –0.1 1.9 3.571 0.092 0.118 1.28 0.53 –1.06 0.30

Li2Rb –0.2 1.8 3.740 0.084 0.085 1.01 0.48 –1.22 0.29

Li2Cs –0.3 1.7 3.995 0.072 0.069 0.96 0.43 –1.52 0.27

Na2F 3.1 4.9 2.034 1.093 2.885 2.64 2.41 13.0 1.05

Na2Cl 2.1 3.9 2.524 0.575 1.289 2.24 1.55 9.1 0.76

Na2Br 1.9 3.7 2.690 0.502 0.822 1.64 1.38 8.0 0.71

Na2I 1.6 3.4 2.908 0.400 0.496 1.24 1.17 7.6 0.63

Na2H 1.2 3.0 2.01* *** 1.50 8.5

Na2Li 0.1 1.9 3.069 0.134 0.261 1.95 0.62 0.3 0.37

Na3 0.0 1.8 3.256 0.112 0.236 2.11 0.55 0.0 0.33

Na2K 0.0 1.8 3.723 0.081 0.168 2.07 0.48 –0.76 0.28

Na2Rb –0.1 1.7 3.884 0.074 0.111 1.50 0.44 –0.92 0.27

Na2Cs –0.2 1.6 4.138 0.066 0.087 1.32 0.39 –1.22 0.26

K2F 3.1 4.9 13.86

K2Cl 2.1 3.9 2.949 0.424 1.159 2.73 1.32 9.86 0.65

K2Br 1.9 3.7 3.096 0.385 0.921 2.39 1.20 8.76 0.62

K2I 1.6 3.4 3.348 0.299 0.578 1.93 1.02 8.36 0.55

K2H 1.2 3.0 2.46* 1.22 9.26

K2Li 0.1 1.9 3.552 0.089 0.161 1.81 0.53 1.06 0.30

K2Na 0.0 1.8 3.721 0.078 0.153 1.96 0.48 0.76 0.28

K3 0.0 1.8 4.223 0.055 0.115 2.09 0.43 0 0.23

Chemistry of vibronic coupling... 1647



Table S1 (continuation)

K2Rb –0.1 1.7 4.360 0.055 0.098 1.78 0.39 –0.16 0.23

K2Cs –0.2 1.6 4.613 0.046 0.069 1.50 0.35 –0.46 0.21

Rb2F 3.2 4.8 13.92

Rb2Cl 2.2 3.8 3.140 0.365 0.892 2.44 1.21 10.02 0.60

Rb2Br 2.0 3.6 3.281 0.347 0.929 2.68 1.10 8.92 0.59

Rb2I 1.7 3.3 3.533 0.271 0.685 2.53 0.93 8.52 0.52

Rb2H 1.3 2.9 2.652 0.290 0.468 1.61 1.09 9.42 0.54

Rb2Li 0.2 1.8 3.718 0.085 0.142 1.67 0.48 1.22 0.29

Rb2Na 0.1 1.7 3.876 0.071 0.121 1.70 0.44 0.92 0.27

Rb2K 0.1 1.7 4.359 0.055 0.101 1.84 0.39 0 0.23

Rb3 0.0 1.6 4.500 0.050 0.103 2.06 0.36 0.16 0.22

Rb2Cs –0.1 1.5 4.761 0.042 0.084 2.00 0.32 –0.3 0.20

Cs2F 3.3 4.7 2.76* 1.70 14.22

Cs2Cl 2.3 3.7 3.349 0.324 0.728 2.25 1.10 10.32 0.57

Cs2Br 2.1 3.5 3.485 0.317 0.827 2.61 1.00 9.22 0.56

Cs2I 1.8 3.2 3.748 0.244 0.663 2.72 0.85 8.82 0.49

Cs2H 1.4 2.8 2.89* 9.72

Cs2Li 0.3 1.7 3.985 0.071 0.112 1.58 0.43 1.52 0.27

Cs2Na 0.2 1.6 4.145 0.062 0.098 1.58 0.39 1.22 0.25

Cs2K 0.2 1.6 4.622 0.046 0.072 1.56 0.35 0.46 0.21

Cs2Rb 0.1 1.5 4.764 0.041 0.078 1.90 0.31 0.3 0.20

Cs3 0.0 1.4 5.026 0.039 0.079 2.03 0.28 0 0.20

Group 2

Be2F 2.5 5.5 1.529 2.320 2.743 1.18 3.60 12.1 1.52

Be2Cl 1.5 4.5 2.101 0.955 –1.215 –1.27 2.14 8.2 0.98

Be2Br 1.3 4.3 2.298 0.792 –0.749 –0.95 1.87 7.1 0.89

Be2I 1.0 4.0 2.511 0.692 –0.557 –0.81 1.59 6.7 0.83

Be2H 0.6 3.6 1.578 0.937 –0.112 –0.12 2.28 7.6 0.97

Be2Li –0.5 2.5 2.619 0.234 0.636 2.72 0.95 –0.6 0.48

Be2Na –0.6 2.4 2.936 0.168 0.367 2.18 0.82 –0.9 0.41

Be2K –0.6 2.4 3.485 0.098 0.173 1.77 0.69 –1.66 0.31

Be2Rb –0.7 2.3 3.707 0.076 0.099 1.30 0.62 –1.92 0.28

Be2Cs –0.8 2.2 3.974 0.064 0.073 1.14 0.55 –2.12 0.25
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Table S1 (continuation)

Mg2F 2.8 5.2 9.1

Mg2Cl 1.8 4.2 2.488 0.657 0.364 0.55 1.69 5.2 0.81

Mg2Br 1.6 4.0 2.688 0.558 0.206 0.37 1.49 4.1 0.75

Mg2I 1.3 3.7 2.920 0.446 0.056 0.13 1.27 3.7 0.67

Mg2H 0.9 3.3 4.6

Mg2Li –0.2 2.2 3.111 0.113 0.268 2.37 0.71 –3.6 0.34

Mg2Na –0.3 2.1 3.456 0.069 0.192 2.78 0.61 –3.9 0.26

Mg2K –0.3 2.1 4.108 0.033 0.090 2.73 0.51 –4.66 0.18

Mg2Rb –0.4 2.0 4.367 0.024 0.049 2.04 0.46 –4.92 0.15

Mg2Cs –0.5 1.9 4.729 0.014 0.025 1.79 0.40 –5.12 0.12

Ca2F 3.0 0.05 11.99

Ca2Cl 2.0 4.0 2.826 0.571 1.17 2.05 1.42 8.09 0.76

Ca2Br 1.8 3.8 3.012 0.466 0.941 2.02 1.26 6.99 0.68

Ca2I 1.5 3.5 3.301 0.346 0.491 1.42 1.06 6.59 0.59

Ca2H 1.1 3.1 7.49

Ca2Li 0.0 2.0 3.195 0.187 0.352 1.88 0.63 –0.71 0.43

Ca2Na –0.1 1.9 3.838 0.072 0.174 2.42 0.50 –1.01 0.27

Ca2K –0.1 1.9 4.475 0.037 0.107 2.89 0.42 –1.77 0.19

Ca2Rb –0.2 1.8 4.695 0.033 0.082 2.48 0.38 –2.03 0.18

Ca2Cs –0.3 1.7 5.001 0.026 0.054 2.08 0.34 –2.23 0.16

Sr2F 3.0 5.0 11.48

Sr2Cl 2.0 4.0 2.983 0.52 1.044 2.01 1.34 7.58 0.72

Sr2Br 1.8 3.8 3.154 0.433 1.114 2.57 1.20 6.48 0.66

Sr2I 1.5 3.5 3.448 0.315 0.717 2.28 1.02 6.08 0.56

Sr2H 1.1 3.1 6.98

Sr2Li 0.0 2.0 3.361 0.167 0.296 1.77 0.60 –1.22 0.41

Sr2Na –0.1 1.9 4.083 0.056 0.115 2.05 0.47 –1.52 0.24

Sr2K –0.1 1.9 4.783 0.027 0.071 2.63 0.40 –2.28 0.16

Sr2Rb –0.2 1.8 4.975 0.025 0.071 2.84 0.36 –2.54 0.16

Sr2Cs –0.3 1.7 5.317 0.019 0.054 2.84 0.32 –2.74 0.14

Ba2F 3.1 4.9 n.d.**

Ba2Cl 2.1 3.9 3.157 0.45 0.892 1.98 1.24 n.d. 0.67

Ba2Br 1.9 3.7 3.308 0.415 1.117 2.69 1.12 n.d. 0.64

Ba2I 1.6 3.4 3.607 0.302 0.814 2.70 0.94 n.d. 0.55
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Table S1 (continuation)

Ba2H 1.2 3.0 n.d.

Ba2Li 0.1 1.9 4.083 0.061 0.101 1.66 9.47 n.d. 0.25

Ba2Na 0.0 1.8 4.317 0.051 0.093 1.82 0.42 n.d. 0.23

Ba2K 0.0 1.8 5.019 0.029 0.067 2.31 0.36 n.d. 0.17

Ba2Rb –0. 1.7 5.210 0.022 0.059 2.68 0.33 n.d. 0.15

Ba2Cs –0.2 1.6 5.580 0.017 0.048 2.82 0.29 n.d. 0.13

Group 13

B2F 2.0 6.0 1.546 1.799 –5.32 –2.96 3.88 9.6 1.34

B2Cl 1.0 5.0 1.981 1.232 –1.852 –1.50 2.52 5.7 1.11

B2Br 0.8 4.8 2.189 0.954 –1.274 –1.34 2.19 4.6 0.98

B2I 0.5 4.5 2.367 0.854 –0.832 –0.97 1.90 4.2 0.92

B2H 0.1 4.1 1.366 1.737 1.578 0.91 3.00 5.1 1.32

B2Li –1.0 3.0 2.025 0.599 1.937 3.23 1.48 –3.1 0.77

B2Na –1.1 2.9 2.690 0.28 0.721 2.58 1.08 –3.4 0.53

B2K –1.1 2.9 3.330 0.16 0.299 1.87 0.87 –4.16 0.40

B2Rb –1.2 2.8 3.556 0.135 0.186 1.38 0.79 –4.32 0.37

B2Cs –1.3 2.7 –4.62

Al2F 2.5 5.5 1.897 1.553 0.573 0.37 2.90 11.6 1.25

Al2Cl 1.5 4.5 2.432 0.748 0.025 0.03 1.85 7.7 0.86

Al2Br 1.3 4.3 2.654 0.628 0.102 0.16 1.62 6.6 0.79

Al2I 1.0 4.0 2.848 0.516 0.105 0.20 1.40 6.2 0.72

Al2H 0.6 3.6 7.1

Al2Li –0.5 2.5 2.814 0.233 0.631 2.71 0.89 –1.1 0.48

Al2Na –0.6 2.4 3.106 0.190 0.616 3.24 0.77 –1.4 0.44

Al2K –0.6 2.4 3.845 0.114 0.289 2.54 0.62 –2.16 0.34

Al2Rb –0.7 2.3 4.065 0.103 0.190 1.85 0.57 –2.32 0.32

Al2Cs –0.8 2.2 4.012 0.079 0.128 1.62 0.55 –2.62 0.28

Ga2F 2.4 5.6 1.991 1.231 0.475 0.39 2.81 11.35 1.11

Ga2Cl 1.4 4.6 2.539 0.648 0.215 0.33 1.81 7.45 0.80

Ga2Br 1.2 4.4 2.730 0.604 0.460 0.76 1.61 6.35 0.78

Ga2I 0.9 4.1 2.947 0.488 0.334 0.68 1.39 5.95 0.70

Ga2H 0.5 3.7 8.85

Ga2Li –0.6 2.6 2.817 0.212 0.529 2.50 0.92 –1.35 0.46

Ga2Na –0.7 2.5 3.107 0.179 0.512 2.86 0.81 –1.65 0.42
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Table S1 (continuation)

Ga2K –0.7 2.5 3.858 0.111 0.267 2.41 0.65 –2.41 0.33

Ga2Rb –0.8 2.4 4.058 0.098 0.205 2.09 0.59 –2.57 0.31

Ga2Cs –0.9 2.3 –2.87

In2F 2.3 5.7 11.9

In2Cl 1.3 4.7 2.687 0.599 0.395 0.66 1.75 8.01 0.77

In2Br 1.1 4.5 2.949 0.488 –0.193 –0.40 1.53 6.91 0.70

In2I 0.8 4.2 3.101 0.444 0.441 0.99 1.35 6.51 0.66

In2H 0.4 3.8 1.977 0.782 1.025 1.31 1.92 7.41 0.88

In2Li –0.7 2.7 3.112 0.197 0.355 1.80 0.87 –0.79 0.44

In2Na –0.8 2.6 3.237 0.162 0.430 2.65 0.80 –1.09 0.40

In2K –0.9 2.5 3.993 0.105 0.227 2.16 0.63 –1.85 0.32

In2Rb –0.9 2.5 4.196 0.092 0.106 1.15 0.60 –2.11 0.30

In2Cs –1.0 2.4 4.223 0.090 0.282 3.13 0.57 –2.31 0.30

Tl2F 2.2 5.8 2.393 0.887 0.549 0.62 2.42 12.3 0.94

Tl2Cl 1.2 4.8 2.841 0.559 0.621 1.11 1.69 8.4 0.75

Tl2Br 1.0 4.6 3.019 0.518 0.722 1.39 1.52 7.3 0.72

Tl2I 0.7 4.3 3.235 0.405 0.594 1.47 1.33 6.9 0.64

Tl2H 0.3 3.9 2.136 0.638 0.919 1.44 1.83 7.8 0.80

Tl2Li –0.8 2.8 2.989 0.178 0.365 2.05 0.94 –0.4 0.42

Tl2Na –0.9 2.7 3.263 0.159 0.399 2.51 0.83 –0.7 0.40

Tl2K –1.0 2.6 3.894 0.095 0.246 2.59 0.67 –1.46 0.31

Tl2Rb –1.0 2.6 4.083 0.085 0.244 2.87 0.64 –1.62 0.29

Tl2Cs –1.1 2.5 4.340 0.077 0.239 3.10 0.58 –1.92 0.28

Group 14

C2F 1.5 6.5 1.453 2.666 –0.980 –0.37 4.47 6.7 1.63

C2Cl 0.5 5.5 1.671 3.147 4.393 1.40 3.29 2.8 1.77

C2Br 0.3 5.3 1.913 2.020 3.519 1.74 2.77 1.7 1.42

C2I 0.0 5.0 2.061 1.946 3.924 2.02 2.43 1.3 1.39

C2H –0.4 4.6 1.121 3.769 6.341 1.68 4.11 2.2 1.94

C2Li –1.5 3.5 1.961 0.787 2.476 3.15 1.79 –6 0.89

C2Na –1.6 3.4 2.430 0.416 1.140 2.74 1.40 –6.3 0.64

C2K –1.6 3.4 2.835 0.299 0.730 2.44 1.20 –7.06 0.55

C2Rb –1.7 3.3 3.188 0.230 0.349 1.52 1.04 –7.22 0.48

C2Cs –1.8 3.2 3.523 0.213 0.195 0.92 0.91 –7.52 0.46
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Table S1 (continuation)

Si2F 2.2 5.8 1.875 1.742 –0.025 –0.014 3.04 8.9 1.32

Si2Cl 1.2 4.8 2.209 1.338 3.150 2.354 2.13 5 1.16

Si2Br 1.0 4.6 2.420 1.069 1.694 1.585 1.86 3.9 1.03

Si2I 0.7 4.3 2.719 0.728 0.121 1.166 1.55 3.5 0.85

Si2H 0.3 3.9 4.4

Si2Li –0.8 2.8 2.441 0.431 1.252 2.905 1.15 –3.8 0.66

Si2Na –0.9 2.7 2.917 0.264 0.758 2.871 0.93 –4.1 0.51

Si2K –0.9 2.7 3.579 0.202 0.484 2.391 0.75 –4.86 0.45

Si2Rb –1.0 2.6 3.806 0.175 0.298 1.703 0.68 –5.02 0.42

Si2Cs –1.1 2.5 4.091 0.147 0.201 1.367 0.61 –5.32 0.38

Ge2F 2.2 5.8 1.973 1.752 2.069 1.181 2.94 9.1 1.32

Ge2Cl 1.2 4.8 2.452 0.992 0.672 0.677 1.96 5.2 1.00

Ge2Br 1.0 4.6 2.577 0.965 2.248 2.330 1.79 4.1 0.98

Ge2I 0.7 4.3 2.869 0.652 0.454 0.696 1.50 3.7 0.81

Ge2H 0.3 3.9 1.595 1.852 3.486 1.882 2.45 4.6 1.37

Ge2Li –0.8 2.8 2.531 0.365 0.973 2.666 1.11 –3.6 0.61

Ge2Na –0.9 2.7 2.931 0.92 –3.9

Ge2K –0.9 2.7 3.642 0.196 0.452 2.306 0.74 –4.66 0.44

Ge2Rb –1.0 2.6 3.849 0.175 0.396 2.263 0.68 –4.82 0.42

Ge2Cs –1.1 2.5 4.130 0.147 0.314 2.136 0.61 –5.12 0.38

Sn2F 2.25 5.75 2.117 1.401 1.492 1.065 2.72 9.78 1.18

Sn2Cl 1.25 4.75 2.640 0.775 0.596 0.769 1.80 5.88 0.88

Sn2Br 1.05 4.55 2.752 0.836 1.866 2.232 1.65 4.78 0.91

Sn2I 0.70 4.25 2.936 0.705 1.719 2.438 1.45 4.38 0.84

Sn2H 0.35 3.85 1.774 1.518 2.812 1.852 2.17 5.28 1.23

Sn2Li –0.75 2.75 2.684 0.323 0.873 2.703 1.02 –2.92 0.57

Sn2Na –0.85 2.65 3.095 0.230 0.582 2.530 0.86 –3.22 0.48

Sn2K –0.95 2.55 3.600 0.154 0.414 2.688 0.71 –3.98 0.39

Sn2Rb –0.95 2.55 3.947 0.117 0.246 2.103 0.65 –4.24 0.34

Sn2Cs –1.05 2.45 4.314 0.132 0.301 2.280 0.57 –4.44 0.36

Pb2F 2.2 5.8 2.200 1.319 1.260 0.955 2.64 10.1 1.15

Pb2Cl 1.2 4.8 2.30* 6.2

Pb2Br 1.0 4.6 2.873 0.688 0.789 1.147 1.60 5.1 0.83

Pb2I 0.7 4.3 2.971 0.687 1.649 2.400 1.45 4.7 0.83
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Table S1 (continuation)

Pb2H 0.3 3.9 1.816 1.400 2.630 1.879 1.31 5.6 1.18

Pb2Li –0.8 2.8 2.961 0.95 –2.6

Pb2Na –0.9 2.7 3.121 0.87 –2.9

Pb2K –1.0 2.6 3.625 0.144 0.361 2.507 0.72 –3.66 0.38

Pb2Rb –1.0 2.6 4.004 0.108 0.206 1.907 0.65 –3.82 0.33

Pb2Cs –1.1 2.5 4.225 0.100 0.203 2.030 0.59 –4.12 0.32

Group 15

N2F 1.0 7.0 1.433 3.482 1.856 0.533 4.88 4.7 1.87

N2Cl 0.0 6.0 1.533 4.905 10.061 2.051 3.91 0.8 2.21

N2Br –0.2 5.8 1.836 2.728 3.642 1.335 3.16 –0.3 1.65

N2I –0.5 5.5 1.943 2.768 2.540 0.918 2.83 –0.7 1.66

N2H –0.9 5.1 1.046 5.257 10.337 1.966 4.88 0.2 2.29

N2Li –2.0 4.0 1.881 0.948 2.814 2.968 2.13 –8 0.97

N2Na –2.1 3.9 2.238 0.505 1.198 2.372 1.74 –8.3 0.71

N2K –2.1 3.9 2.839 0.361 0.697 1.931 1.37 –9.06 0.60

N2Rb –2.2 3.8 3.054 0.301 0.404 1.342 1.24 –9.22 0.55

N2Cs –2.3 3.7 3.148 0.257 0.371 1.444 1.18 –9.52 0.51

P2F 1.9 6.1 1.805 2.304 2.533 1.100 3.38 4.1 1.52

P2Cl 0.9 5.1 2.174 1.595 –0.827 –0.518 2.35 0.2 1.26

P2Br 0.7 4.9 2.337 2.10 –0.9

P2I 0.4 4.6 2.519 1.83 –1.3

P2H 0.0 4.2 –0.4

P2Li –1.1 3.1 2.318 0.581 1.719 2.959 1.34 –8.6 0.76

P2Na –1.2 3.0 2.787 0.377 0.951 2.522 1.08 –8.9 0.61

P2K –1.2 3.0 3.367 0.247 0.585 2.368 0.89 –9.66 0.50

P2Rb –1.3 2.9 3.488 0.83 –9.82

P2Cs –1.4 2.8 3.715 0.18 0.324 1.800 0.75 –10.12 0.42

As2F 2.0 6.0 1.979 1.873 1.702 0.909 3.03 5.94 1.37

As2Cl 1.0 5.0 2.311 1.348 2.909 2.158 2.16 2.04 1.16

As2Br 0.8 4.8 2.529 1.90 0.94

As2I 0.5 4.5 2.940 0.694 –0.512 –0.738 1.53 0.54 0.83

As2H 0.1 4.1 1.534 2.367 4.471 1.889 2.67 1.44 1.54

As2Li –1.0 3.0 2.559 0.482 1.005 2.085 1.17 –6.76 0.69

As2Na –1.1 2.9 2.890 0.344 0.74 2.151 1.00 –7.06 0.59
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Table S1 (continuation)

As2K –1.1 2.9 3.454 0.238 0.555 2.332 0.84 –7.82 0.49

As2Rb –1.2 2.8 3.653 0.217 0.514 2.369 0.77 –7.98 0.47

As2Cs –1.3 2.7 3.755 0.195 0.519 2.662 0.72 –8.28 0.44

Sb2F 2.1 5.9 2.127 1.656 1.82 1.099 2.77 6.4 1.29

Sb2Cl 1.1 4.9 2.5

Sb2Br 0.9 4.7 2.719 1.73 1.4

Sb2I 0.6 4.4 3.124 0.605 –0.329 –0.544 1.41 1 0.78

Sb2H 0.2 4.0 1.723 1.878 3.471 1.848 2.32 1.9 1.37

Sb2Li –0.9 2.9 2.757 0.412 0.832 2.019 1.05 –6.3 0.64

Sb2Na –1.0 2.8 3.078 0.296 0.581 1.963 0.91 –6.6 0.54

Sb2K –1.1 2.8 3.660 0.21 0.445 2.119 0.77 –7.36 0.46

Sb2Rb –1.1 2.7 3.862 0.19 0.436 2.295 0.70 –7.62 0.44

Sb2Cs –1.2 2.6 4.130 0.155 0.369 2.381 0.63 –7.82 0.39

Bi2F 2.2 5.8 2.180 1.636 1.903 1.163 2.66 10.31 1.28

Bi2Cl 1.2 4.8 6.41

Bi2Br 1.0 4.6 2.757 0.97 2.176 2.243 1.67 5.31 0.98

Bi2I 0.7 4.3 3.157 0.593 –0.229 –0.386 1.36 4.91 0.77

Bi2H 0.3 3.9 5.81

Bi2Li –0.8 2.8 2.808 0.388 0.767 1.977 1.00 –2.39 0.62

Bi2Na –0.9 2.7 3.126 0.28 0.513 1.832 0.86 –2.69

Bi2K –1.0 2.6 3.656 0.15 0.261 1.740 0.71 –3.45 0.39

Bi2Rb –1.0 2.6 3.820 0.165 0.387 2.345 0.68 –3.61 0.41

Bi2Cs –1.1 2.5 4.183 0.152 0.347 2.283 0.60 –3.91 0.39

Group 16

O2F 0.5 7.5 1.500 3.281 –6.615 –2.016 5.00 3.3 1.81

O2Cl –0.5 6.5 1.807 2.347 –1.234 –0.526 3.60 –0.6 1.53

O2Br –0.7 6.3 1.857 2.881 2.939 1.020 3.39 –1.7 1.70

O2I –1.0 6.0 1.950 2.977 3.909 1.313 3.08 –2.1 1.73

O2H –1.4 5.6 1.063 5.111 23.187 4.537 5.27 –1.2 2.26

O2Li –2.5 4.5 1.843 1.018 2.211 2.172 2.44 –9.4 1.01

O2Na –2.6 4.4 2.105 0.595 1.491 2.506 2.09 –9.7 0.77

O2K –2.6 4.4 2.667 0.438 0.869 1.984 1.65 –10.46 0.66

O2Rb –2.7 4.3 2.874 0.366 0.505 1.380 1.50 –10.62 0.60

O2Cs –2.8 4.2 3.090 0.304 0.334 1.099 1.36 –10.92 0.55
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Table S1 (continuation)

S2F 1.5 6.5 1.817 2.298 1.102 0.480 3.58 7.1 1.52

S2Cl 0.5 5.5 2.217 1.672 0.134 0.080 2.48 3.2 1.29

S2Br 0.3 5.3 2.515 1.068 –1.51 –1.414 2.11 2.1 1.03

S2I 0.0 5.0 2.641 1.136 –2.292 –0.257 1.89 1.7 1.07

S2H –0.4 4.6 1.440 2.643 3.407 1.289 3.19 2.6 1.63

S2Li –1.5 3.5 2.244 0.708 1.837 2.581 1.56 –5.6 0.84

S2Na –1.6 3.4 2.645 0.392 0.803 2.048 1.29 –5.9 0.63

S2K –1.6 3.4 3.189 0.285 0.67 2.351 1.07 –6.66 0.53

S2Rb –1.7 3.3 3.397 0.248 0.472 1.903 0.97 –6.82 0.50

S2Cs –1.8 3.2 3.649 0.209 0.318 1.522 0.88 –7.12 0.46

Se2F 1.6 6.4 1.965 2.119 2.302 1.086 3.26 3.7 1.46

Se2Cl 0.6 5.4 2.435 2.22 –0.2

Se2Br 0.4 5.2 2.590 1.072 1.287 1.201 2.01 –1.3 1.04

Se2I 0.1 4.9 2.865 0.962 –0.671 –0.698 1.71 –1.7 0.98

Se2H –0.3 4.5 1.577 2.233 2.749 1.231 2.85 –0.8 1.49

Se2Li –1.4 3.4 2.241 0.576 1.105 1.918 1.39 –9.0 0.76

Se2Na –1.5 3.3 2.809 0.439 0.894 2.036 1.17 –9.3 0.66

Se2K –1.5 3.3 3.235 0.259 0.667 2.575 1.02 –10.06 0.51

Se2Rb –1.6 3.2 3.408 0.245 0.698 2.849 0.94 –10.22 0.49

Se2Cs –1.7 3.1 3.755 0.207 0.468 2.261 0.83 –10.52 0.45

Te2F 1.9 6.1 2.116 1.743 1.411 0.810 2.88 3.3 1.32

Te2Cl 0.9 5.1 2.556 1.073 1.141 1.063 2.00 –0.6 1.04

Te2Br 0.7 4.9 2.765 0.923 1.317 1.427 1.77 –1.7 0.96

Te2I 0.4 4.6 3.070 0.792 –1.226 –1.548 1.50 –2.1 0.89

Te2H 0.0 4.2 2.649 0.482 0.912 1.892 1.59 –1.2 0.69

Te2Li –1.1 3.1 2.937 0.375 0.815 2.173 1.06 –9.4 0.61

Te2Na –1.2 3.0 3.546 0.231 0.482 2.087 0.85 –9.7 0.48

Te2K –1.2 3.0 3.745 0.204 0.469 2.299 0.80 –10.46 0.45

Te2Rb –1.3 2.9 3.878 0.166 0.489 2.946 0.75 –10.62 0.41

Te2Cs –1.4 2.8 –10.92

Group 17

F3 0.0 8.0 1.680 1.480 –5.16 –3.490 4.76 0.0 1.22

F2Cl –1.0 7.0 1.773 3.95 –3.9 1.72

F2Br –1.2 6.8 –5.0

F2I –1.5 6.5 –5.4
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Table S1 (continuation)

F2H –1.9 6.1 1.096 4.642 –1.441 –0.310 5.57 –4.5 2.15

F2Li –3.0 5.0 1.737 1.187 2.36 1.990 2.88 –12.7 1.09

F2Na –3.1 4.9 2.065 0.787 2.122 2.700 2.37 –13 0.89

F2K –3.1 4.9 2.407 0.517 1.52 2.940 2.04 –13.76 0.72

F2Rb –3.2 4.8 2.716 0.431 0.658 1.53 1.77 –13.92 0.66

F2Cs –3.3 4.7 2.914 0.362 0.445 1.23 1.61 –14.22 0.60

Cl2F 1.0 7.0 2.036 1.067 –3.924 –3.68 3.44 3.9 1.03

Cl3 0.0 6.0 2.259 1.605 –1.053 –0.66 2.66 0 1.27

Cl2Br –0.2 5.8 2.445 1.403 0.247 0.18 2.37 –1.1 1.18

Cl2I –0.5 5.5 2.574 1.328 1.176 0.89 2.14 –1.5 1.15

Cl2H –0.9 5.1 1.499 2.522 –1.215 –0.48 3.40 –0.6 1.59

Cl2Li –2.0 4.0 2.184 0.753 1.435 1.91 1.83 –8.8 0.87

Cl2Na –2.1 3.9 2.526 0.504 1.213 2.41 1.54 –9.1 0.71

Cl2K –2.1 3.9 3.049 0.326 0.775 2.38 1.28 –9.86 0.57

Cl2Rb –2.2 3.8 3.251 0.289 0.574 1.99 1.17 –10.02 0.54

Cl2Cs –2.3 3.7 3.486 0.238 0.380 1.6 1.06 –10.32 0.49

Br2F 1.2 6.8 2.089 1.679 –1.343 –0.8 3.25 5 1.30

Br2Cl 0.2 5.8 2.487 1.234 –2.030 –1.65 2.33 1.1 1.11

Br3 0.0 5.6 2.671 1.200 –0.195 –2.38 2.10 0 1.10

Br2I –0.3 5.3 3.371 0.181 –0.430 –2.38 1.57 –0.4 0.43

Br2H –0.7 4.9 1.662 1.995 –0.553 –0.28 2.95 0.5 1.41

Br2Li –1.8 3.8 2.404 0.540 0.612 1.13 1.58 –7.7 0.73

Br2Na –1.9 3.7 2.690 0.453 0.917 2.02 1.38 –8 0.67

Br2K –1.9 3.7 3.130 0.283 0.744 2.63 1.18 –8.76 0.53

Br2Rb –2.0 3.6 3.300 0.262 0.774 2.95 1.09 –8.92 0.51

Br2Cs –2.1 3.5 3.631 0.229 0.516 2.25 0.96 –9.22 0.48

I2F 1.5 6.5 2.211 1.546 –0.655 –0.42 2.94 5.4 1.24

I2Cl 0.5 5.5 2.750 2.00 1.5 0.96

I2Br 0.3 5.3 2.880 0.782 –0.235 –0.3 1.84 0.4 0.88

I3 0.0 5.0 3.076 0.639 –0.316 –0.49 1.63 0 0.80

I2H –0.4 4.6 1.849 1.626 –0.426 –0.26 2.49 0.9 1.28

I2Li –1.5 3.5 2.560 0.544 0.967 1.78 1.37 –7.3 0.74

I2Na –1.6 3.4 2.967 0.328 0.403 1.23 1.15 –7.6 0.57

I2K –1.6 3.4 3.451 0.241 0.499 2.07 0.99 –8.36 0.49
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Table S1 (continuation)

I2Rb –1.7 3.3 3.648 0.218 0.508 2.33 0.90 –8.52 0.47

I2Cs –1.8 3.2 3.770 0.179 0.546 3.05 0.85 –8.82 0.42

* R0 has been evaluated performing energy scan along symmetric stretching coordinate.
** n.d. = not determined.
*** blank places – for these molecules we met computational problems, as described in the Methods of

Calculations section.

Table S2. Calculated geometric, vibrational and vibronic parameters for linear ABA� molecules where A =
alkali metal, H or halogen, B = selected d-block element: optimized A–B bond length (R0/Å), force
constant for the symmetric (kg/mDyne Å–1) and antisymmetric stretching (ku/mDyne Å–1), and
vibronic stability parameter (G/1). Sum and difference of electronegativities between A and B
(ENA + ENB, and � EN, respectively) and parameter f [arb.u.] are also shown. Molecules are
grouped by affiliation of A to a given group or period of the periodic table. Negative values of ku

and G indicate imaginary frequency for antisymmetric stretch.

molecule � EN ENA + ENB R0/Å kg/mDyne Å–1 ku/mDyneÅ–1
G/1 f/arb.u.

Group 10

Au2F 1.6 6.4 2.147 1.510 1.374 0.91 2.98

Au2Cl 0.6 5.4 2.475 1.102 1.102 1.00 2.18

Au2Br 0.4 5.2 2.652 0.864 0.941 1.09 1.96

Au2I 0.1 4.9 2.782 0.825 0.987 1.20 1.76

Au2H –0.3 4.5 *

Au2Li –1.4 3.4 2.447 0.480 0.770 1.60 1.39

Au2Na –1.5 3.3 2.764 0.391 0.726 1.86 1.19

Au2K –1.6 3.2 3.213 0.276 0.587 2.13 1.00

Au2Rb –1.6 3.2 3.400 0.231 0.579 2.51 0.94

Au2Cs –1.7 3.1 3.585 0.206 0.595 2.89 0.86

Ag2F 2.1 5.9 2.175 1.205 1.957 1.62 2.71

Ag2Cl 1.1 4.9 2.528 0.833 1.272 1.53 1.94

Ag2Br 0.9 4.7 2.679 0.757 1.293 1.71 1.75

Ag2I 0.6 4.4 2.830 0.643 0.988 1.54 1.55

Ag2H 0.2 4.0

Ag2Li –0.9 2.9 2.545 0.319 0.538 1.69 1.14

Ag2Na –1.0 2.8 2.826 0.280 0.550 1.97 0.99

Ag2K –1.1 2.7 3.267 0.193 0.416 2.16 0.83

Ag2Rb –1.1 2.7 3.453 0.172 0.440 2.56 0.78

Ag2Cs –1.2 2.6 3.856 0.116 0.176 1.52 0.67

Cu2F 2.1 5.9 1.907 1.688 3.132 1.86 3.09

Cu2Cl 1.1 4.9 2.267 1.066 1.997 1.87 2.16

Cu2Br 0.9 4.7 2.427 0.923 1.727 1.87 1.94

Cu2I 0.6 4.4 2.593 0.789 1.225 1.55 1.70

Cu2H 0.2 4.0 1.563 1.203 1.902 1.58 2.56

Cu2Li –0.9 2.9 2.492 0.305 0.360 1.18 1.16

Cu2Na –1.0 2.8 2.699 0.275 0.597 2.17 1.04

Cu2K –1.1 2.7 3.172 0.176 0.401 2.28 0.85

Cu2Rb –1.1 2.7 3.354 0.153 0.380 2.48 0.81

Cu2Cs –1.2 2.6 3.564 0.122 0.286 2.34 0.73
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Table S2 (continuation)

Group 4

Hf2F 2.7 5.3 2.087 1.910 0.880 0.46 2.54

Hf2Cl 1.7 4.3

Hf2Br 1.5 4.1 2.658 0.910 1.376 1.51 1.54

Hf2I 1.2 3.8 2.803 0.834 1.831 2.20 1.36

Hf2H 0.8 3.4

Hf2Li –0.3 2.3 2.721 0.85

Hf2Na –0.4 2.2 3.447 0.142 0.270 1.90 0.64

Hf2K –0.5 2.1 4.030 0.074 0.172 2.32 0.52

Hf2Rb –0.5 2.1 4.220 0.090 0.268 2.98 0.50

Hf2Cs –0.6 2.0 4.047 0.126 0.258 2.06 0.45

Zr2F 2.6 5.4 2.176 1.606 2.537 1.58 2.48

Zr2Cl 1.6 4.4

Zr2Br 1.4 4.2 2.681 0.955 2.323 2.43 1.57

Zr2I 1.1 3.9 2.780 1.008 2.670 2.65 1.40

Zr2H 0.7 3.5

Zr2Li –0.4 2.4 2.997 0.267 0.598 2.24 0.80

Zr2Na –0.5 2.3 3.220 0.71

Zr2K –0.6 2.2 3.774 0.125 0.252 2.02 0.58

Zr2Rb –0.6 2.2 3.988 0.105 0.247 2.35 0.55

Zr2Cs –0.7 2.1 4.314 0.098 0.187 1.90 0.49

Ti2F 2.5 5.5

Ti2Cl 1.5 4.5 2.206 1.612 4.639 2.88 2.04

Ti2Br 1.3 4.3 2.666 0.736 1.091 1.48 1.61

Ti2I 1.0 4.0 2.764 0.678 1.353 2.00 1.45

Ti2H 0.6 3.6

Ti2Li –0.5 2.5 3.013 0.240 0.457 1.91 0.83

Ti2Na –0.6 2.4

Ti2K –0.7 2.3 3.599 0.154 0.308 2.01 0.64

Ti2Rb –0.7 2.3 3.801 0.135 0.254 1.88 0.61

Ti2Cs –0.8 2.2

Period VI

Pt2F 1.8 6.2 2.063 1.732 2.321 1.34 3.01

Pt2Cl 0.8 5.2 2.298

Pt2Br 0.6 5.0 2.570 0.944 1.905 2.02 1.95

Pt2I 0.3 4.7 2.750 0.958 1.335 1.39 1.71

Pt2H –0.1 4.3

Pt2Li –1.2 3.2 2.418 0.523 0.926 1.77 1.32

Pt2Na –1.3 3.1 2.774 0.391 0.724 1.85 1.12

Pt2K –1.4 3.0 3.207 0.270 0.595 2.20 0.94

Pt2Rb –1.4 3.0 3.386 0.227 0.603 2.66 0.89

Pt2Cs –1.5 2.9 3.559 0.211 0.659 3.13 0.81

Ir2F 1.8 6.2

Ir2Cl 0.8 5.2

Ir2Br 0.6 5.0 2.518 1.331 3.190 2.40 1.99

Ir2I 0.3 4.7 2.763 1.70

Ir2H –0.1 4.3
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Table S2 (continuation)

Ir2Li –1.2 3.2 2.529 –0.488 –0.750 –1.54 1.27

Ir2Na –1.3 3.1 2.842 1.09

Ir2K –1.4 3.0 3.270 0.243 0.486 2.00 0.92

Ir2Rb –1.4 3.0 3.461 0.210 0.491 2.33 0.87

Ir2Cs –1.5 2.9 3.652 0.167 0.444 2.66 0.79

Os2F 1.8 6.2

Os2Cl 0.8 5.2

Os2Br 0.6 5.0 2.578 1.94

Os2I 0.3 4.7 2.802 0.882 0.114 0.13 1.68

Os2H –0.1 4.3

Os2Li –1.2 3.2 2.629 0.422 0.555 1.32 1.22

Os2Na –1.3 3.1 2.922 0.343 0.562 1.64 1.06

Os2K –1.4 3.0 3.288 0.91

Os2Rb –1.4 3.0 3.470 0.210 0.541 2.57 0.86

Os2Cs –1.5 2.9 3.799 0.155 0.332 2.15 0.76

Period V

Pd2F 1.8 6.2 2.103 1.422 2.477 1.74 2.95

Pd2Cl 0.8 5.2

Pd2Br 0.6 5.0 2.564 0.931 2.376 2.55 2.42

Pd2I 0.3 4.7 2.693 0.861 2.334 2.71 1.75

Pd2H –0.1 4.3

Pd2Li –1.2 3.2 2.345 0.458 0.834 1.82 1.36

Pd2Na –1.3 3.1 2.697 0.361 0.819 2.27 1.15

Pd2K –1.4 3.0 3.054 0.213 0.519 2.44 0.98

Pd2Rb –1.4 3.0 3.210 0.208 0.642 3.08 0.93

Pd2Cs –1.5 2.9 3.331 0.181 0.578 3.20 0.87

Rh2F 1.8 6.2 2.092 1.449 2.688 1.86 2.96

Rh2Cl 0.8 5.2

Rh2Br 0.6 5.0 2.568 0.960 2.554 2.66 1.95

Rh2I 0.3 4.7 2.645 1.78

Rh2H –0.1 4.3

Rh2Li –1.2 3.2 2.359 1.36

Rh2Na –1.3 3.1 2.738 0.332 0.787 2.37 1.13

Rh2K –1.4 3.0 3.134 0.165 0.368 2.23 0.96

Rh2Rb –1.4 3.0 3.244 0.175 0.572 3.27 0.92

Rh2Cs –1.5 2.9 3.683 0.127 0.241 1.89 0.79

Ru2F 1.8 6.2

Ru2Cl 0.8 5.2

Ru2Br 0.6 5.0 2.607 0.740 2.263 3.06 1.92

Ru2I 0.3 4.7 2.735 0.621 2.304 3.71 1.72

Ru2H –0.1 4.3

Ru2Li –1.2 3.2 2.550 0.342 0.409 1.20 1.25

Ru2Na –1.3 3.1 2.834 0.297 0.662 2.23 1.09

Ru2K –1.4 3.0 3.257 0.199 0.504 2.53 0.92

Ru2Rb –1.4 3.0 3.446 0.171 0.511 2.99 0.87

Ru2Cs –1.5 2.9 3.680 0.125 0.372 2.98 0.79

*blank places – for these molecules we met computational problems, as described in the Methods of
Calculations section.
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