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A comparative study of Hamilton and overlap population methods
for the analysis of chemical bonding

Wingfield V. Glassey and Roald Hoffmanna)

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301

~Received 3 February 2000; accepted 4 May 2000!

The utility of Hamilton population analysis—a partitioning of the electronic energy of a molecule—
is investigated within a one-electron molecular orbital framework of the extended Hu¨ckel type. The
classical Mulliken overlap population description of the valence electron density in terms of one-
and two-center ‘‘atom’’ and ‘‘bond’’ contributions, respectively, provides the starting point for the
development of an atom-bond energy partitioning scheme. Within an extended Hu¨ckel framework
simple analytic relations exist between Hamilton populations and Mulliken overlap populations,
permitting a step-by-step comparative study of the techniques. The formalism developed for
population analysis of two-orbital interactions is tested by performing Hamilton and overlap
population analyses of chemical bonding in the isoelectronic series of main group fluorides BrF5 ,
@TeF5#2, @SbF5#22 and the tetrahedralP4 cluster. These molecules were specifically chosen to
illustrate the circumstances under which Hamilton and overlap population descriptions of chemical
bonding will differ and when they will qualitatively agree. Differences come to the fore when atoms
of quite different electronegativity interact, or even in a homonuclear system with disparate atomic
basis orbital energies. The significant atomic electronegativity differences in the fluorides result in
substantive differences between Hamilton and overlap population descriptions of bonding in these
compounds. In contrast the smalls–p energy separation in phosphorus results in qualitatively
similar Hamilton and overlap population descriptions of P–P bonding inP4 . We argue that
Hamilton population analysis, by explicitly including reference to the energies of the individual
orbitals, affords a more reliable analysis of orbital interactions in molecules. ©2000 American
Institute of Physics.@S0021-9606~00!30929-1#
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I. INTRODUCTION

Traditionally, Mulliken population analysis1,2 has played
a leading role in semiquantitative molecular orbital bas
analysis of chemical bonding. Population analysis is a w
of moving from wave functions to the chemist’s notions
charges and bond orders. It permits a partitioning of theelec-
trons among orbitals and atoms, and the overlap popula
serves as a useful bonding index. In this article the utility
overlap population analysis is compared and contrasted
that of a relatively new bonding descriptor, the Hamilt
population.3,4

As we discussed in a previous article,4 Hamilton popu-
lation analysis augments and extends the range of chem
bonding situations amenable to study by overlap popula
analysis. By effecting a partitioning of the total electron
energy~at least in a one-electron theory!, Hamilton popula-
tion analysis allows us to compare on a fair basis, for
ample,s–s and s–p interactions in the series of hydroge
halides HX~X5F,Cl,Br,I!.4

Comparisons such as this are precarious if using ove
population analysis. Much experience has shown that the
solute values of the overlap populations are useful when
lized within analogous bonding situations involving the sa
orbitals on identical atoms, as, for instance, when compa

a!Author to whom correspondence should be addressed. Electronic
rh34@cornell.edu
1690021-9606/2000/113(5)/1698/7/$17.00
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the individuals–s, s–p, and p–p components of C–Os
bonding in methanol versus dimethyl ether.

Consider, for instance, thes–s ands–p components of
the sigma bond in H–F as calculated using overlap a
Hamilton population partitionings within an extende
Hückel framework.5 The s–s and s–p overlap populations
are 0.247 and 0.256, respectively. Should we therefore c
siders–s ands–p interactions to be of equal importance
making up the H–F bond? The 2s and 2p orbitals on fluo-
rine are hardly equivalent in their contributions to the to
energy of a fluorine atom or a HF molecule. Indeed the
spectives–s ands–p Hamilton populations of212.91 and
27.19 eV for H–F are quite different. Thus thes–s ands–p
interactions are not of equal ‘‘strength’’ when viewed fro
an energetic standpoint, even though the overlap popula
contribution of each is roughly the same.

In this paper we address the following question: ‘‘Whic
population analysis technique is the best descriptor of che
cal bonding?’’ To answer this fundamental question we m
first review the formulation of each analytical tool—initiall
within the general framework of a one-electron theory a
later within a one-electron scheme of the extended Hu¨ckel
type.

II. MULLIKEN OVERLAP POPULATION ANALYSIS

Mulliken overlap population analysis affects a partitio
ing of the electron density. The partitioning of the electr
il:
8 © 2000 American Institute of Physics
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1699J. Chem. Phys., Vol. 113, No. 5, 1 August 2000 Analysis of chemical bonding
density into orbital and overlap populations provides a ro
to obtaining both qualitative measures of bonding betw
atoms—the overlap population and the electron densities
sociated with individual atoms.

The Mulliken charge on an atomk, qk , is given by

qk5Nk2H (
mPB~k!

MOOPmm1
1

2 (
mPB~k!

(
nPB~ l !

MOOPmnJ ,

for kÞ l , ~1!

whereB( i ) denotes the set of basis functions~atomic orbit-
als! associated with atomi andNk is the number of valence
electrons on atomk.

The quantities MOOPmm and MOOPmn may be called,
respectively, themth ‘‘on-site’’ and the mnth ‘‘off-site’’
overlap population. Such terms were not used previously
Mulliken and others, but they are intuitive and make a use
connection to what follows. In this context the term ‘‘on
site’’ refers to the occupancy of a particular atomic ba
function, and ‘‘off-site’’ refers to the electron density ass
ciated with the interaction of two atomic basis functions
different centers.

Within the LCAO approximation, the wave function fo
the ith eigenstate of the molecule can be written as

c i5(
m

cm ifm , ~2!

for an atom localized basis set$fm%, m51,2,...,N. On defin-
ing the overlap between the basis functionsfm and fn by
the matrix elementSmn5^fmufn& the on- and off-site popu
lations MOOPmm and MOOPmn are given by

MOOPmm5 (
MO’s

i

ni ucm i u2, ~3!

and

MOOPmn5 (
MO’s

i

ni$cm i* cn iSmn1cn i* cm iSnm%. ~4!

III. HAMILTON POPULATION ANALYSIS

We now proceed to derive an on-/off-site partitioning
the electronic energy analogous to that just presented for
electron density.

On adopting a one-electron formalism within the LCA
approximation~2!, the energy of theith eigenstate is given
by

Ei5^c i uĤuc i&

5(
m

(
n

cm i* cn i^fmuĤufn&

5(
m

(
n

cm i* cn iHmn , ~5!

and the total energy is written
Downloaded 03 Dec 2012 to 128.253.229.242. Redistribution subject to AIP
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Etot5 (
MO’s

i

niEi , ~6!

whereni is the electron occupancy of theith eigenstate. Sub
stituting ~5! into ~6! gives

Etot5 (
MO’s

i

(
m

ni ucm i u2Hmm

1 (
MO’s

i

(
m

(
n

ni$cm i* cn iHmn1cn i* cm iHnm%. ~7!

The first term of~7! consists solely of contributions from
diagonal Hamiltonian matrix elements—elements that de
the contributions to the total energy arising from electr
occupancy of the valence basis functions. Thus, the first t
of ~7! is designated an ‘‘on-site’’ energy term, and the se
ond term @which consists of energy contributions arrisin
from the interaction of different basis functions (Hmn ,m
Þn)] is designated the ‘‘off-site’’ energy term. The on-/of
site energy partitioning is the essence of Hamilton popu
tion analysis. Equations~8! and~9! define themth on-site and
mnth off-site Hamilton population, respectively,

MOHPmm5 (
MO’s

i

ni ucm i u2Hmm , ~8!

MOHPmn5 (
MO’s

i

ni$cm i* cn iHmn1cn i* cm iHnm%. ~9!

IV. ENERGY PARTITIONING WITHIN AN EXTENDED
HÜCKEL FRAMEWORK

Within an extended Hu¨ckel framework,5 the off-diagonal
Hamiltonian matrix elements (Hmn ,mÞn) are parametrized
in terms of the corresponding overlap matrix eleme
(Smn)6 according to~10!,

Hmn5kS Hmm1Hnn

2 DSmn , such thatk51.75,

~10!
5kmnSmn .

At times a more complicated expression forHmn has
been used;7,8 this does not modify the argument in the s
quel.

A comparison of the on- and off-site overlap and Ham
ton populations defined by the pairs of equations~3!, ~8! and
~4!, ~9!, respectively, illustrates the close relation betwe
Mulliken overlap population and Hamilton population anal
sis techniques within an extended Hu¨ckel framework. The
relation is concisely summarized by Eqs.~11! and ~12!, re-
spectively,

MOHPmm5HmmMOOPmm , ~11!

MOHPmn5kmnMOOPmn . ~12!

If Hamilton population analysis partitions thetotal en-
ergy and Mulliken overlap population analysis partition
electrons, Eqs. ~11! and ~12!, which relate on- and off-site
 license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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1700 J. Chem. Phys., Vol. 113, No. 5, 1 August 2000 W. V. Glassey and R. Hoffmann
Hamilton and overlap populations, imply that we may thi
of Hamilton population analysis as an energy-weight
overlap population analysis.

It is important to note that when carrying out Hamilto
population analysis, bonding orbital interactions result
negative HP’s, in contrast to the corresponding positive ov
lap populations. The sign reversal can be directly traced
the ‘‘energy weighting,’’kmn ~12!. A positive overlap popu-
lation transforms to a negative Hamilton population wh
multiplied by the sum of diagonal Hamiltonian matrix el
ments (Hmm1Hnn), both of which are negative numbers.

We now proceed with a discussion of the characteris
of overlap and Hamilton population analysis when applied
simple two-orbital systems.

V. POPULATION ANALYSIS IN TWO-ORBITAL
SYSTEMS

In order to provide a clear comparison of overlap a
Hamilton population analysis techniques, in this section
focus on the simplest chemical bonding situation possi
bonding in the hydrogen molecule. This simple two-orbi
system can also be manipulated, within the bounds of
extended Hu¨ckel methodology, to model both homo
~scheme1!

and heteronuclear~scheme2!

orbital interactions. This is accomplished in the numeri
experiments we perform by varying the diagonal Ham
tonian matrix elements of the 1s orbitals~which define their
energy!; in effect, we simulate a ‘‘pseudhydrogen,’’ an ato
whose orbital is spatially identical to that of hydrogen but
differing electronegativity.

In addition to varying the energy of the basis orbitals
is possible to alter the radial extent of the 1s orbitals by
varying the Slater exponent. In the following work we fixe
orbital exponents at the value traditionally used
hydrogen,9 even as the electronegativity of an atom was v
ied, so as to focus attention on the behavior of overlap
Hamilton population analysis techniques as a function of
sis orbital energy.

Consider the following numerical experiment. Th
H1–H2 overlap and Hamilton populations~MOOP12 and
MOHP12, respectively! were calculated as the energy of th
1s orbital on hydrogen number 2,H22 increased from218.6
to 29.6 eV in 1 eV increments. The energy of the 1s orbital
for hydrogen number 1,H11, was fixed at the elementa
Downloaded 03 Dec 2012 to 128.253.229.242. Redistribution subject to AIP
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hydrogen value of213.6 eV throughout. The results ar
summarized in Fig. 1, all overlap and Hamilton populatio
being plotted relative to their respective values for the hom
nuclear case defined byH115H225213.6 eV.

On examination of Fig. 1 it is apparent that overlap a
Hamilton populations behave in a fundamentally differe
way. The homonuclear case is a maximum in the over
population curve, all departures from symmetry leading t
decrease in overlap population. On the other hand, the ho
nuclear case holds no more significance than any other p
on the Hamilton population curve. The monotonic form
the Hamilton population curve shown in Fig. 1 can be trac
to the linear relation betweenH22 and the ‘‘energy-
weighting,’’ kmn @see Eq.~10!# used to generate the MOH
from the corresponding MOOP according to Eq.~12!. From
a Hamilton population viewpoint, and that of energy par
tioning in general, bonding interactions involving energe
cally low lying basis functions are favored over those inte
actions between energetically higher lying basis function.

Within the LCAO concept we embrace the idea that to
good approximation the molecular electron density can
reproduced by a superposition of atomic electron densit
Thus, it is not surprising that on forming a molecular orbi
the energy of the molecular orbital is representative of
energies of the constituent atomic ‘‘basis’’ orbitals. For
canonical illustration of this point consider the homonucle
case, for which on varyingH11(5H22) the overlap popula-
tion remains constant and the off-site Hamilton populatio
MOHP12 varies linearly with respect to the diagonal Ham
tonian matrix element, as illustrated in Fig. 2.

Let us see if we can understand what is happening w
the aid of perturbation theory. The wave functions for t
homonuclear case~13! serve as the zeroth-order wave fun
tions for the study of the perturbation from the homonucle
1 to heteronuclear case2,

c15
1

A2~11S!
$f11f2% ~bonding!,

FIG. 1. H1–H2 overlap and Hamilton populations as a function of the dia
onal Hamiltonian matrix element~basis orbital energy! for the 1s orbital on
H2 , H22 . The diagonal Hamiltonian matrix element for the 1s orbital on H1

is fixed at the elemental hydrogen value of213.6 eV.
~13!
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c25
1

A2~12S!
$f12f2% ~antibonding!,

where we have definedS5^f1uf2& to be the overlap matrix
element between the basis functionsf1 and f2 . The over-
lap, S, between the H(1s) orbitals is positive.

Formally, the wave function of theith eigenstate in the
heteronuclear case may be expressed as a series of co
tions to the zeroth-order homonuclear wave function for
ith eigenstate, according to

c i5c i
01c i

11c i
21c i

31¯ . ~14!

In order to describe the form of the overlap populati
curve in Fig. 1, it is necessary to consider only the first-or
correction to the zeroth-order wave functions,c i

1.
Generally, the first-order correction to theith wave func-

tion is written as

c i
15 (

mÞ i
dm icm

0 , such thatdm i52
^cm

0 uĤ8uc i
0&

~Em
0 2Ei

0!
, ~15!

where Ei
0 denotes theith eigenvalue of the zeroth-orde

~homonuclear! Hamiltonian andĤ8 represents the perturba
tion to the zeroth-order Hamiltonian,Ĥ0.

The Hamiltonian for the perturbed system,Ĥ is written
as

Ĥ5Ĥ01Ĥ85S H11 H12

H12 H22
D 1S 0 H128

H128 D
D . ~16!

Here H128 denotes the correction to the off-diagonal Ham
tonian matrix element arising from the perturbationH22

5H111D.
Thus, for the case of two-orbital interactions the fir

order correction to the wave function is written as

c1
15d21c2

052
^c2

0uĤ8uc1
0&

~E2
02E1

0!
•c2

0. ~17!

Equation~17! can be simplified on noting that

^c2
0uĤ8uc1

0&52
D

2A~11S!~12S!
, ~18!

for a perturbationD defined by~16!.
Thus, we approximate the perturbed bonding wave fu

tion by

c1'c1
01c1

1'
1

AN
H ~f11f2!1S D

d
•

1

2~12S! D ~f12f2!J ,

~19!

whered is the energy difference between the bonding a
antibonding homonuclear~zeroth-order! eigenvalues,d5E2

0

2E1
0 as illustrated in scheme1, and the normalizing factor

N, is defined by the relation

N5
~11g2!1~12g2!S

~11S!
. ~20!

On defining the positive quantityg by
Downloaded 03 Dec 2012 to 128.253.229.242. Redistribution subject to AIP
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2~12S!
, ~21!

the bonding wave function for the heteronuclear case is
proximated by the expression

c1'
1

AN
$~11g!f11~12g!f2%, such thatg.0. ~22!

The form of the overlap population curve shown in Fi
1 can be understood from Eq.~22! if we now consider the
definition of the Mulliken overlap population matrix eleme
between orbitals 1 and 2, MOOP12 ~4!. Substituting~22! in
~4! gives

MOOP125
4~11g!~12g!S

N
5

4~12g2!S

N
. ~23!

Thus, as the size of the perturbationD increases, the
overlap population between basis functions 1 and 2
creases as the square ofD @as per the definition ofg given in
Eq. ~21!#. Thus, we can now account for the parabolic for
of the overlap population curve shown in Fig. 1. Further,
are now in a position to understand the invariance of
overlap population for the homonuclear case~D50⇒g50!
with respect to the energy of the basis orbitals, as illustra
by Fig. 2.

Thus far, we have been able to reproduce, through
use of perturbation theory, the basic characteristics of ov
lap population analysis pertaining to simple two-orbital i
teractions. How are we to interpret these curves? Within
extended Hu¨ckel framework orbital interactions have bee
productively analyzed as a function of the overlap betwe
the orbitals, as described by the Wolfsberg–Helmholtz
proximation of Eq. ~10!. Further, the explicit absence o
electrostatic contributions to the extended Hu¨ckel Hamil-
tonian~as well as some experience with ionic systems! leads
us to conclude that it basically captures best the cova
bonding extreme.

Within such a covalent description, and using on
electron perturbation theory, we expect the strength of orb
interactions to increase with increasing orbital overlap a

FIG. 2. H1–H2 overlap and Hamilton populations as a function of ba
orbital energy for a degenerate two-orbital interaction.
 license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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1702 J. Chem. Phys., Vol. 113, No. 5, 1 August 2000 W. V. Glassey and R. Hoffmann
decrease on increasing the energy separation of the inte
ing orbitals.2 Both of these ‘‘criteria’’ are realized in the
expression for the off-site overlap population~23!—the en-
ergy separation of the interacting orbitals,D, varying linearly
with g, as given by Eq.~21!.

Now consider Hamilton populations. Recall our earl
conclusion that Hamilton population analysis may be cons
ered ~within an extended Hu¨ckel framework! to be an
energy-weighted overlap population analysis. We may t
regard Hamilton populations as bonding descriptors that
corporate not only information on the overlap and ‘‘ener
match’’ of the interacting orbitals but also information on t
energetic contribution arising from the orbital interactio
The ‘‘energy weighting’’ we refer to is that given by th
Wolfsberg–Helmholtz formula~10! and reflects, in its use o
the diagonal Hamiltonian matrix elements for the basis or
als, the basic tenet of the LCAO approximation—that t
molecular electron density can, to a good approximation
represented by a sum over atomic densities. Most imp
tantly, the use of the energy weighting~10! extends the range
of applicability of the overlap population to include a ran
of moderately ionic bonding situations.

We now proceed with an analysis of the variation in t
off-site overlap population as a function of the energy of
‘‘fixed’’ orbital, by a series of numerical experiments anal
gous to that summarized by Fig. 1. In doing so we are
tempting to understand how the results of population an
sis vary, not only as a function of the extent of the homo-
heteronuclear perturbation, but also as a function of the e
tronegativity of the atoms with which the basis orbitals a
associated. In referring to electronegativity we are, within
context of out numerical experiments, varying the energy
the ‘‘fixed’’ basis function—a quantity we subsequently r
fer to as the ‘‘reference energy’’ for the experiment.

Consider the overlap population curves given in Fig.
The curves were generated in numerical experiments an
gous to that summarized by Fig. 1—save for the value of
reference energy. From Fig. 3 we can see that as the r
ence energy increases, changes in overlap population f
given value ofD increase. Thus, for the nondegenerate c

FIG. 3. H1–H2 overlap population as a function of the homo to hete
nuclear perturbationD and the ‘‘reference energy’’ for each perturbation
Downloaded 03 Dec 2012 to 128.253.229.242. Redistribution subject to AIP
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2, the overlap population, for any nonzero value ofD, is not
invariant with respect to the energy of the basis orbitals.

Consider the definition of the quantityg as given by Eq.
~22! and consider the overlap population~23! as a function
of the reference energy for a fixed value ofD ~as defined by
scheme2!. Since we are not altering the overlap between
basis orbitals,g becomes a function ofd, the energy separa
tion of the bonding and antibonding orbitals. Thus, to und
stand how overlap population varies with basis orbital e
ergy ~for a given value ofD!, it is necessary to define howd
varies with respect to the basis function energies.

Within an extended Hu¨ckel framework the eigenvalue
for the heteronuclear case2 are

E15
~H111H22!•~11kS!

2~11S!
~bonding!,

~24!

E25
~H111H22!•~12kS!

2~12S!
~antibonding!,

whereS5^f1uf2& is the overlap matrix element between th
basis orbitals and the constantk has a value of 1.75.

From Eq.~24! d, for the heteronuclear case, becomes

d5
S~12k!

~12S2!
~H111H22!. ~25!

Thus d varies linearly as the sum of the basis orbital en
gies. Hence, as the reference energy increases the magn
of d decreases~for fixed D!, andg increases—producing th
observed decrease in overlap population as defined by
~23!.

The increased sensitivity of overlap populations to t
homo- to heteronuclear perturbation on increasing the re
ence energy is simply an illustration of the variational pr
ciple at work. On effecting a homo- to heteronuclear pert
bation, the on-site overlap population of the energetica
lower lying basis orbital increases at the expense of the
site overlap population~23! in an effort to minimize the total
electronic energy of the system. This is an effect that
comes increasingly important as the reference energy
creases and the total electronic energy decreases.

We now proceed with an application of populatio
analysis to main group compounds to illustrate the ramifi
tions of the population analysis characteristics we have
highlighted for two-orbital interactions.

VI. APPLICATIONS OF POPULATION ANALYSIS TO
MAIN GROUP COMPOUNDS

In this section we analyze the differences betwe
Hamilton and overlap population descriptions of chemi
bonding for several main group compounds. These h
been selected to illustrate the range of bonding situati
amenable to study by overlap and Hamilton populat
analysis. Initially we focus on the isoelectronic series of h
pervalent square pyramidal fluorides BrF5 , @TeF5#2,
@SbF5#22 3 and analyze the E–F~E5Br,Te,Sb! interactions
in terms of the constituents–s, s–p, andp–p interactions.
This is followed by an analysis of theP4 molecule, which
illustrates another bonding extreme.
 license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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A. The square pyramidal fluorides, EF 5 , EÄBr,Te,Sb

Despite being a point of intrinsic electronic interest, t
hypervalency of these compounds is not our primary inter
The large range of basis orbital energies offered by this
ries of compounds~see Table I! affords us the opportunity to
examine the behavior of overlap and Hamilton populat
analyses over the entire spectrum of interactions discusse
the preceeding section. The fluoride structures are illustra
schematically in scheme3,

the subscriptsa andb being used to denote axial and bas
fluorine atoms.

The population analyses were performed using the Y
HMOP extended Hu¨ckel package.10 The extended Hu¨ckel
parameters used in this study are summarized in Table I.
Amsterdam Density Functional~ADF! package11 was used
to generate molecular geometries for input to the exten
Hückel calculations. The ADF calculations were perform
using the Vosko–Wilk–Nusair parametrization of the LDA12

with gradient corrections using the parametrizations of
Becke~exchange!13 and Perdew~correlation!.14 A triple zeta
basis set~ADF database IV! was used to model all atoms
The ADF optimized fluoride geometries were in reasona
agreement with previously reported geometries.15

For these, and all other main group compounds, ths
and p basis orbitals on one atomic center will interact w
both thes andp orbitals on neighboring centers. Thus the
are four separate interactions that must be considered w
forming homonuclear~scheme4!

and heteronuclear~scheme5!

compounds.
Let us begin by analyzing thes–s, s–p, andp–p con-

tributions to bonding within the extended Hu¨ckel approxima-
tion for both the axial and basal E–F bonds~E5Br,Te,Sb!.
The E–F interactions here generally fall into the pattern
scheme5. The s–s, s–p, and p–p contributions to axial
and basal E–F~E5Br,Te,Sb! bonding are given in Table I
for both Hamilton and overlap population analyses.
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On examination of the extended Hu¨ckel parameters
given in Table I, we note that the E–F interaction can
subdivided into two groups of basis orbital interactions. T
E(s) – F(p) and E(p) – F(p) interactions involve basis orbit
als with a modest energy separation and thus operate clo
the regime around the overlap population maximum in F
1. Thus, we expect the relative magnitudes of E(s) – F(p)
and E(p) – F(p) overlap populations to qualitatively mirro
the corresponding Hamilton populations.

In contrast, the E(s) – F(s) and E(p) – F(s) interactions
operate in a regime toward the left-hand extreme of Fig
we do not expect that these overlap populations will refl
the corresponding Hamilton populations.

This is indeed what we find on examination of thes–s,
s–p, and p–p components of E–F bonding in EF5 ~E
5Br,Te,Sb!. Consider, for instance, Br–Faxial bonding. From
Table II we calculate that thep–p component of the
Br–Faxial overlap population is greater than thes–s compo-
nent by a factor of 5.1, in contrast to the more modest
crease in Hamilton population by a factor of 2.5. This siza
discrepancy is due, primarily, to the energetically very lo
lying F(2s) basis orbital, which transforms a relatively sma
s–s overlap population into a significant Hamilton popul
tion via the Wolfsberg–Helmholtz ‘‘energy weighting’
given in Eq.~10!.

If we examine the Br(s) – F(p) and Br(p) – F(p) compo-
nents of the Br–Faxial interaction, we note that for basis o
bital interactions involving relatively modest energy sepa
tions the overlap and Hamilton population ratios for the
components of the interaction are more similar at 1:3.8 a
1:3.0, respectively.

If we note that the Br(s) – F(p) and Br(p) – F(p) inter-
actions involve basis orbitals separated by 4 and 5
respectively—a small separation by extended Hu¨ckel
standards9—we conclude that even for such interactio
Hamilton and overlap population descriptions of orbital i
teractions can differ significantly.

B. The P4 cluster

Now let us turn our attention to a somewhat differe
situation, P–P bonding in the tetrahedralP4 cluster. Scheme

TABLE I. Extended Hu¨ckel parameters used in this study.

Atom Orbital Hii /eV z

H 1s 213.600 1.300
F 2s 240.000 2.425

2p 218.100 2.425
Br 4s 222.100 2.588

4p 213.100 2.131
Te 5s 220.800 2.510

5p 214.800 2.160
Sb 5s 218.800 2.323

5p 211.700 1.999
P 3s 218.600 1.750

3p 214.000 1.300
B 2s 215.200 1.300

2p 28.500 1.300
C 2s 221.400 1.625

2p 211.400 1.625
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4 is relevant here, remembering that the energy separa
between theP(3s) and P(3p) basis orbitals is;4.6 eV—
small when compared withs/p separations of;21.9 eV in
fluorine,;9.0 eV in bromine, etc. Thus,s–s, s–p, andp–p
interactions all operate in the regime close to the maxim
in the overlap population curve of Fig. 1. Hence, we exp
Hamilton and overlap population analyses to yield qual
tively similar descriptions of P–P bonding in tetrahedralP4 .

Indeed, on examination of Table III, the results
Hamilton and overlap population partitioning of P–P bon
ing are qualitatively similar. The relatives–s, s–p, and
p–p contributions to P–P bonding as calculated by an ov
lap population analysis mirror those calculated by Hamil
population analysis.

VII. CONCLUSION

We have reasoned that Hamilton population analysis
fords us the opportunity to study a significantly wider ran
of chemical bonding situations than those amenable to
study by Mulliken overlap population analysis.

We believe that the well-documented shortcomings
extended Hu¨ckel theory will not detract from the utility of

TABLE II. Decomposition of M–F bonding by Hamilton and Mulliken
overlap population analysis for the isoelectronic square pyramidal fluor
BrF5 , @TeF5#2, and@SbF5#22.

Interaction

Br–Faxial Br–Fbasal

HP/eV OP HP/eV OP

Br(s) – F(s) 22.00 0.035 2.38 20.042
Br(s) – F(p) 21.66 0.047 1.41 20.040
Br(p) – F(s) 24.17 0.080 24.80 0.092
Br(p) – F(p) 24.96 0.179 23.50 0.127

Interaction

Te–Faxial Te–Fbasal

HP/eV OP HP/eV OP

Te(s) – F(s) 23.81 0.068 1.66 20.030
Te(s) – F(p) 22.36 0.069 0.53 20.016
Te(p) – F(s) 22.74 0.052 25.58 0.106
Te(p) – F(p) 24.09 0.141 23.81 0.131

Interaction

Sb–Faxial Sb–Fbasal

HP/eV OP HP/eV OP

Sb(s) – F(s) 22.72 0.050 1.94 20.035
Sb(s) – F(p) 21.11 0.034 0.77 20.024
Sb(p) – F(s) 24.77 0.093 24.70 0.092
Sb(p) – F(p) 23.30 0.124 22.33 0.087
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Hamilton population analysis as a versatile tool for detail
albeit semiquantitative, analysis of chemical bonding. T
belief is founded on the success of overlap populat
analysis—a formalism that, as we have seen, is incorpor
within the Hamilton population concept.

Our evaluation of Hamilton population analysis conti
ues and we suspect that the full utility of Hamilton popu
tion analysis as a transparent semiquantitative covalent b
ing descriptor will only become apparent as the number
applications of this bonding descriptor mounts in the lite
ture.
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