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A comparative study of Hamilton and overlap population methods
for the analysis of chemical bonding
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Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301

(Received 3 February 2000; accepted 4 May 2000

The utility of Hamilton population analysis—a partitioning of the electronic energy of a molecule—
is investigated within a one-electron molecular orbital framework of the extendekieHtype. The
classical Mulliken overlap population description of the valence electron density in terms of one-
and two-center “atom” and “bond” contributions, respectively, provides the starting point for the
development of an atom-bond energy partitioning scheme. Within an extenadeHramework
simple analytic relations exist between Hamilton populations and Mulliken overlap populations,
permitting a step-by-step comparative study of the techniques. The formalism developed for
population analysis of two-orbital interactions is tested by performing Hamilton and overlap
population analyses of chemical bonding in the isoelectronic series of main group fluoridgs BrF
[TeR;], [SbR]?" and the tetrahedrdP, cluster. These molecules were specifically chosen to
illustrate the circumstances under which Hamilton and overlap population descriptions of chemical
bonding will differ and when they will qualitatively agree. Differences come to the fore when atoms
of quite different electronegativity interact, or even in a homonuclear system with disparate atomic
basis orbital energies. The significant atomic electronegativity differences in the fluorides result in
substantive differences between Hamilton and overlap population descriptions of bonding in these
compounds. In contrast the smal-p energy separation in phosphorus results in qualitatively
similar Hamilton and overlap population descriptions of P—P bondind®jn We argue that
Hamilton population analysis, by explicitly including reference to the energies of the individual
orbitals, affords a more reliable analysis of orbital interactions in molecules20@ American
Institute of Physicg.S0021-960600)30929-1

I. INTRODUCTION the individuals—s, s—p, and p—p components of C—-Gr

" . . &2 bonding in methanol versus dimethyl ether.
Traditionally, Mulliken population analysis has played Consider, for instance, the-s ands—p components of

a leading role in semiquantitative molecular orbital baseqhe sigma bond in H—F as calculated using overlap and
analysis of chemical bonding. Population analysis is a way 2 milton population partitionings within an extended
of moving from wave functions to the chemist's notions of ., o frameworlé The s—s and s—p overlap populations
charges and bond orders. It permits a partitioning ofllee- 510 § 247 and 0.256, respectively. Should we therefore con-
trons among orbitals and atoms, and the overlap populationjje s s ands—p interactions to be of equal importance in
serves as a useful bonding index. In this article the utility Ofmaking up the H—F bond? Theszand 2 orbitals on fluo-
overlap population analysis is compared and contrasted With,e are hardly equivalent in their contributions to the total
that of a g(ilanvely new bonding descriptor, the Hamilton oq 0y of 4 fluorine atom or a HE molecule. Indeed the re-
population-* _ _ , _ spectives—s ands—p Hamilton populations of-12.91 and

i As we dl_scussed in a previous arti¢l¢jamilton popu- . —7.19 eV for H—F are quite different. Thus thes ands—p
Iatlon_ ana!y3|s. augments and extends the range of Chem'cfﬂteractions are not of equal “strength” when viewed from
bondln.g situations 'amenable't'o §tudy by overlap populat!orén energetic standpoint, even though the overlap population
analysis. By effecting a partitioning of the total electronic contribution of each is roughly the same
energy(at least in a one-electron thegryHamilton popula- In this paper we address the following question: “Which

tion lanaly5|s z’(‘j”OWS us to compare r?” a fair b?sr‘l'sa for exy5pulation analysis technigue is the best descriptor of chemi-
ample,s—s ands-—p Interactions In the series of hydrogen ., yonding?” To answer this fundamental question we must

: _ 4
halides HX(X=F,CI,Br,)). first review the formulation of each analytical tool—initially

Comparisons such as this are precarious if using overlagin the general framework of a one-electron theory and
population analysis. Much experience has shown that the al?éter within a one-electron scheme of the extendédkel
solute values of the overlap populations are useful when utit—

. I . . - . . €.
lized within analogous bonding situations involving the sameyp
orbitals on identical atoms, as, for instance, when comparinﬂ
. MULLIKEN OVERLAP POPULATION ANALYSIS

dAuthor to whom correspondence should be addressed. Electronic mail: Mulliken overlap p0p_U|ati0n analys_is _affeCtS a partition-
rh34@cornell.edu ing of the electron density. The partitioning of the electron
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density into orbital and overlap populations provides a route

to obtaining both qualitative measures of bonding between Etot:’\% niE;, (6)
atoms—the overlap population and the electron densities as- P

sociated with individual atoms.

X o wheren; is the electron occupancy of thith eigenstate. Sub-
The Mulliken charge on an atokg qy, is given by

stituting (5) into (6) gives

1
=N,— MOOP, ,+ = MOOP,, !, Etor= nilc.i|?H
Ak k p,eZA’(k) o ZMEZ/}“() VEZ/)“) % tot l\%s % || ;u| L
I
for k#l, (1) E E
. + ni{c¥c,iH,,+ckciH, .} (7

where. 7 denotes the set of basis functiof@omic orbit- MO's “u "y s B
als) associated with atornand N is the number of valence ) _ o
electrons on atork. The first term of(7) consists solely of contributions from

The quantities MOOP, and MOOP,, may be called, diagonal Hamiltonian matrix elements—elements that define
respectively, theuth “on-site” and the with “off-site” the contributions to the total energy arising from electron

overlap popu'ation. Such terms were not used previous'y prCUpancy of the Valence baSiS funCtiOI’]S. Thus, the fiI’St term
Mulliken and others, but they are intuitive and make a usefuPf (7) is designated an “on-site” energy term, and the sec-
connection to what follows. In this context the term “on- ond term[which consists of energy contributions arrising
site” refers to the occupancy of a particular atomic basisffom the interaction of different basis functionsi(,,u
function, and “off-site” refers to the electron density asso- # ¥)] is designated the “off-site” energy term. The on-/off-
ciated with the interaction of two atomic basis functions onsite energy partitioning is the essence of Hamilton popula-
different centers. tion analysis. Equation@) and(9) define theuth on-site and
Within the LCAO approximation, the wave function for ##th off-site Hamilton population, respectively,
theith eigenstate of the molecule can be written as

MOHPM:N%S nilcLil®H ., (8
ll/i:E C,u,id),u.! (2) i
"
— * *
for an atom localized basis sgp,,}, u=1,2,...N. On defin- MOHPW_N%S Ni{CLiChiH T ChiCLiH Ll ©)

ing the overlap between the basis functiapg and ¢, by i

the matrix elemen$,,=(#,|¢,) the on- and off-site popu-
lations MOOP,, and MOOR,, are given by IV, ENERGY PARTITIONING WITHIN AN EXTENDED

HUCKEL FRAMEWORK

MOOP,,,= E nilc,il?, (3) Within an extended Fekel frameworlC the off-diagonal
MO's Hamiltonian matrix elementsH,,, ,u# v) are parametrized
in terms of the corresponding overlap matrix elements
and (S,.,)® according to(10),
H,,tH,,
MOOP’”:MEOS Ni{CXiCLiSu T ChiCLiS, ) (4 H,,= K<’“‘T S.,, such thatxk=1.75,
i
10
=KM,,SM,,. (10

IIl. HAMILTON POPULATION ANALYSIS At times a more complicated expression fir,, has

8 thi - - )
We now proceed to derive an on-/off-site partitioning of P€€" used;” this does not modify the argument in the se

the electronic energy analogous to that just presented for th%uel' i ) )
electron density. A comparison of the on- and off-site overlap and Hamil-

On adopting a one-electron formalism within the LCAO N Populations defined by the pairs of equatid®s (8) and

approximation(2), the energy of théth eigenstate is given (4), (9), respectively, illustrates the close relation between
Mulliken overlap population and Hamilton population analy-

b .
y sis techniques within an extended ¢kel framework. The
Ei=<¢i||:||¢i> relation is concisely summarized by Eq4l) and(12), re-
spectively,
=%‘, Z chic,i{dulH| b, MOHP,,=H ,,MOOP, (11)
MOHP,,=x,, MOOP,, . (12)
— *
_g 2;4 CuiCuilun, (5 If Hamilton population analysis partitions thetal en-
ergy and Mulliken overlap population analysis partitions
and the total energy is written electrons Egs. (11) and (12), which relate on- and off-site
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Hamilton and overlap populations, imply that we may think 12 F
of Hamilton population analysis as an energy-weighted ®—e H,-H, MOHP
overlap population analysis L1 e—oH,-H, MOOP

It is important to note that when carrying out Hamilton
population analysis, bonding orbital interactions result in
negative HP’s, in contrast to the corresponding positive over- Relative

lap populations. The sign reversal can be directly traced to Fepulation *
the “energy weighting,”«,,, (12). A positive overlap popu- 08 b
lation transforms to a negative Hamilton population when

multiplied by the sum of diagonal Hamiltonian matrix ele- 0.7 r
ments H,,+H,,), both of which are negative numbers. os

We now proceed with a discussion of the characteristics
of overlap and Hamilton population analysis when applied to
simple two-orbital systems. H,,/eV

-20 -18 -i6 =14 -12 -10 -8 -6

FIG. 1. H,—H, overlap and Hamilton populations as a function of the diag-
V. POPULATION ANALYSIS IN TWO-ORBITAL onal Hamiltonian matrix elemerfbasis orbital energyfor the 1s orbital on

SYSTEMS H,, Ha,. The diagonal Hamiltonian matrix element for the drbital on H

. . is fixed at the elemental hydrogen value-613.6 eV.
In order to provide a clear comparison of overlap and

Hamilton population analysis techniques, in this section we
focus on the simplest chemical bonding situation possible,
bonding in the hydrogen molecule. This simple two-orbitalhydrogen value of—13.6 eV throughout. The results are
system can also be manipulated, within the bounds of theummarized in Fig. 1, all overlap and Hamilton populations
extended Huokel methodology, to model both homo- being plotted relative to their respective values for the homo-
(schemel) nuclear case defined By,;;=H,,= —13.6eV.
i On examination of Fig. 1 it is apparent that overlap and
' \ Hamilton populations behave in a fundamentally different
' \ way. The homonuclear case is a maximum in the overlap
population curve, all departures from symmetry leading to a
’ decrease in overlap population. On the other hand, the homo-
\ ’ nuclear case holds no more significance than any other point
on the Hamilton population curve. The monotonic form of

and heteronuclea(scheﬁ:ez)\ the Hamilton population curve shown in Fig. 1 can be traced
' \ to the linear relation betweerH,, and the “energy-
/) * 2 weighting,” «,, [see Eq(10)] used to generate the MOHP
R — (I)2 from the corresponding MOOP according to E)2). From
0 ' TA ) a Hamilton population viewpoint, and that of energy parti-
1 —é\- """ ) tioning in general, bonding interactions involving energeti-
\_// cally low lying basis functions are favored over those inter-

actions between energetically higher lying basis functions
Within the LCAO concept we embrace the idea that to a
good approximation the molecular electron density can be
reproduced by a superposition of atomic electron densities.
Thus, it is not surprising that on forming a molecular orbital
the energy of the molecular orbital is representative of the
energies of the constituent atomic “basis” orbitals. For a
canonical illustration of this point consider the homonuclear
case, for which on varyindd,(=H,,) the overlap popula-

orbital interactions. This is accomplished in the numerical
experiments we perform by varying the diagonal Hamil-
tonian matrix elements of theslorbitals (which define their
energy; in effect, we simulate a “pseudhydrogen,” an atom
whose orbital is spatially identical to that of hydrogen but of
differing electronegativity.

In addition to varying the energy of the basis orbitals it
is possible to alter the radial extent of the drbitals by

varying the Slater exponent. In the following work we fixed .. ; 4 . .
. . tion remains constant and the off-site Hamilton population,
orbital exponents at the value traditionally used for

- MOHP;, varies linearly with respect to the diagonal Hamil-
hydroger® even as the electronegativity of an atom was var-, . . . R
. . . tonian matrix element, as illustrated in Fig. 2.
ied, so as to focus attention on the behavior of overlap an

. . . . . Let us see if we can understand what is happening with
Hamilton population analysis techniques as a function of ba: ; . )
. ; the aid of perturbation theory. The wave functions for the
sis orbital energy.

. . . . homonuclear cas€l3) serve as the zeroth-order wave func-
Consider the following numerical experiment. The . .
. . tions for the study of the perturbation from the homonuclear
H,—H, overlap and Hamilton population@MOOP;, and 1 to heteronuclear ca
MOHP;,, respectively were calculated as the energy of the
1s orbital on hydrogen number ®,, increased from-18.6 1

to —9.6 eV in 1 eV increments. The energy of the drbital

Y1=——=———=={d11¢2} (bonding,
for hydrogen number 1H,;, was fixed at the elemental V2(1+9)

(13
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1 14 F
o=——={d1— ¢»} (antibonding, 13 | &—e H,-H, MOHP
/2(1_5) . —o H,~H, MOOP
where we have define8= (4| ¢,) to be the overlap matrix 1t b
element between the basis functioig and ¢,. The over- Relaive ;[ o _ oo
lap, S, between the H(4) orbitals is positive. Population
Formally, the wave function of thith eigenstate in the 01
heteronuclear case may be expressed as a series of correc- 08 -
tions to the zeroth-order homonuclear wave function for the 07 b
ith eigenstate, according to 06 |
U= G g (14 os L .

. ] 20 18 <16 14 -1z _-10 -8 6
In order to describe the form of the overlap population

curve in Fig. 1, it is necessary to consider only the first-order

correction to the Ze.mth'order Wave_funCt'omi;’lr FIG. 2. H—H, overlap and Hamilton populations as a function of basis
Generally, the first-order correction to thte wave func-  orbital energy for a degenerate two-orbital interaction.

tion is written as

H/eV

RCAGHES)

1_ 0 _
yi=2 d,y°, such thatd, = (IEiiTiO)’

1
e m

(15 A 1

YT 2(1-9)
the bonding wave function for the heteronuclear case is ap-
proximated by the expression

(21)

where E? denotes theith eigenvalue of the zeroth-order
(homonuclearHamiltonian andH’ represents the perturba-
tion to the zeroth-order Hamiltonia{®.

The Hamiltonian for the perturbed s steI:m,is written 1
s P y b= UL+ (1= 9, such thaty>0. (22
N
A Ao A, Hii Hi 0 Hp The form of the overlap population curve shown in Fig.
H=H"+H"= Hi, Hap Hi, A (18 1 can be understood from E®2) if we now consider the

definition of the Mulliken overlap population matrix element
Here H}, denotes the correction to the off-diagonal Hamil- petween orbitals 1 and 2, MOQP(4). Substituting(22) in
tonian matrix element arising from the perturbatiéty,  (4) gives
- H 11+ A . 2
41+ y)(1-»)S 4(1-y)S

Thus, for the case of two-orbital interactions the first- _
. o MOOP;, (23
order correction to the wave function is written as N N
<¢0||:|'|¢0> Thus, as the size of the perturbatidnincreases, the
Y= dppyd= — 2t 0. (17)  overlap population between basis functions 1 and 2 de-
(E2—Ey) creases as the squarefofas per the definition o given in
Equation(17) can be simplified on noting that Eqg. (21)]. Thus, we can now account for the parabolic form

of the overlap population curve shown in Fig. 1. Further, we
are now in a position to understand the invariance of the

(PaIH'|¢) = — — e, (18)  overlap population for the homonuclear cgge=0=>y=0)
2V(1+9)(1-9) with respect to the energy of the basis orbitals, as illustrated
for a perturbatiom defined by(16). by Fig. 2.
Thus, we approximate the perturbed bonding wave func-  Thus far, we have been able to reproduce, through the
tion by use of perturbation theory, the basic characteristics of over-

lap population analysis pertaining to simple two-orbital in-
o .1 1 A teractions. How are we to interpret these curves? Within an
'/’1%"”1+¢1~\/_N (1+d2) + 5 2(1-9) (¢1=2) [, extended Haokel framework orbital interactions have been
(199  Pproductively analyzed as a function of the overlap between

the orbitals, as described by the Wolfsberg—Helmholtz ap-

where & is the energy difference between the bondin% anthroximation of Eq.(10). Further, the explicit absence of
antibonding homonuclegrzeroth-ordey eigenvaluesg=E;  gjectrostatic contributions to the extended ckiel Hamil-

O . . ..
—E; as illustrated in schemg and the normalizing factor,  (gnian(as well as some experience with ionic systefeads
N, is defined by the relation us to conclude that it basically captures best the covalent

(1+ %) +(1-9)S bonding extreme. o _
= (1+9) (20 Within such a covalent description, and using one-
electron perturbation theory, we expect the strength of orbital
On defining the positive quantity by interactions to increase with increasing orbital overlap and
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1.2 2, the overlap population, for any nonzero value\gfis not
oo =-186cV invariant _vvith respec_t .tq the energy of Fhe ba:_sis orbitals.
6—0F, =-136eV Consider the definition of the quantityas given by Eq.
*—*E, =-86eV _ (22) and consider the overlap populati¢23) as a function
of the reference energy for a fixed valueffas defined by
) 1y scheme?). Since we are not altering the overlap between the
P%;ﬁ’l‘;:’izn basis orbitals;y becomes a function af, the energy separa-
tion of the bonding and antibonding orbitals. Thus, to under-

stand how overlap population varies with basis orbital en-
ergy (for a given value ofd), it is necessary to define hosv
08 varies with respect to the basis function energies.

Within an extended Fekel framework the eigenvalues
for the heteronuclear cagare

11 F

0.7 1 1 L 1 1 1 1 1
% -4 =2 0 2 4 6 8
E (Hi1tHz) - (1+«S) (bondi
= onding,
alev L 2(1+9) 9
FIG. 3. H—H, overlap population as a function of the homo to hetero- (24
nuclear perturbatiosh and the “reference energy” for each perturbation. _ (Hy1tHpp)- (1-«9) tibondi
o= 2(1-9) (antibonding,

vy_hereSz(gBﬂ ¢») is the overlap matrix element between the
%asis orbitals and the constanthas a value of 1.75.
From Eq.(24) &, for the heteronuclear case, becomes

decrease on increasing the energy separation of the intera
ing orbitals? Both of these “criteria” are realized in the
expression for the off-site overlap populati(28)—the en-

ergy separation of the interacting orbitats,varying linearly S(1-«)
with y, as given by Eq(22). o= W(Hlﬁ' Hzo). (25

Now consider Hamilton populations. Recall our earlier ] ) ) )
conclusion that Hamilton population analysis may be consid- NUS 9 varies linearly as the sum of the basis orbital ener-
ered (within an extended Fikel framework to be an 9i€S: Hence, as the reference energy increases the magnitude

energy-weighted overlap population analysis. We may the?f ¢ decreasegfor fixed A), andy increases—producing the
regard Hamilton populations as bonding descriptors that in9PServed decrease in overlap population as defined by Eq.
corporate not only information on the overlap and “energy 23).

match” of the interacting orbitals but also information onthe ~ 1h€ increased sensitivity of overlap populations to the
energetic contribution arising from the orbital interaction, N0MO- to hetéronuclear perturbation on increasing the refer-

The “energy weighting” we refer to is that given by the €NCe energy is simply an illustration of the variational prin-
Wolfsberg—Helmholtz formulé10) and reflects, in its use of CiPIe at work. On effecting a homo- to heteronuclear pertur-
the diagonal Hamiltonian matrix elements for the basis orbitPation, the on-site overlap population of the energetically
als, the basic tenet of the LCAO approximation—that the!OWer lying basis orbital increases at the expense of the off-
molecular electron density can, to a good approximation, b&it€ overlap populatiof23) in an effort to minimize the total
represented by a sum over atomic densities. Most impor€l€ctronic energy of the system. This is an effect that be-
tantly, the use of the energy weightif0) extends the range COMeS increasingly important as the reference energy in-

of applicability of the overlap population to include a range €r€@ses and the total electronic energy decreases.
of moderately ionic bonding situations. We now proceed with an application of population

We now proceed with an analysis of the variation in the@"lysis to main group compounds to illustrate the ramifica-
off-site overlap population as a function of the energy of thet'f)”s_ of the populatlon_ anegS|s c_haractenstlcs we have just
“fixed” orbital, by a series of numerical experiments analo- Nghlighted for two-orbital interactions.
gous to that summarized by Fig. 1. In doing so we are at-
tgmptlng to understand how the results of population analyvl_ APPLICATIONS OF POPULATION ANALYSIS TO
sis vary, not only as a fgnctlon of the extent of the homo- tOMAIN GROUP COMPOUNDS
heteronuclear perturbation, but also as a function of the elec-
tronegativity of the atoms with which the basis orbitals are  In this section we analyze the differences between
associated. In referring to electronegativity we are, within theHamilton and overlap population descriptions of chemical
context of out numerical experiments, varying the energy obonding for several main group compounds. These have
the “fixed” basis function—a quantity we subsequently re- been selected to illustrate the range of bonding situations
fer to as the “reference energy” for the experiment. amenable to study by overlap and Hamilton population

Consider the overlap population curves given in Fig. 3.analysis. Initially we focus on the isoelectronic series of hy-
The curves were generated in numerical experiments analgervalent square pyramidal fluorides BrF[Teks]
gous to that summarized by Fig. 1—save for the value of th¢ SbR;]?~ 3 and analyze the E—fE=Br,Te,Sh interactions
reference energy. From Fig. 3 we can see that as the refein terms of the constituerg—s, s—p, andp—p interactions.
ence energy increases, changes in overlap population for Ehis is followed by an analysis of the, molecule, which
given value ofA increase. Thus, for the nondegenerate casdlustrates another bonding extreme.
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A. The square pyramidal fluorides, EF 5, E=Br,Te,Sb TABLE I. Extended Hekel parameters used in this study.
Despite being a point of intrinsic electronic interest, the  Atom Orbital H; leV ¢

hypervalency of these c_ompo_unds is n(_)t our primary mtgrest. 1s —13.600 1300
The large range of basis orbital energies offered by this se- ¢ 25 —40.000 2.425
ries of compoundssee Table)l affords us the opportunity to 2p —18.100 2.425
examine the behavior of overlap and Hamilton population  Br 4s —22.100 2.588
analyses over the entire spectrum of interactions discussed in To ‘;2 :;g'égg géf(l)
the preceeding section. The fluoride structures are illustrated 5p _14.800 2160
schematically in schem@, Sb 55 —18.800 2.323
F, 5p —-11.700 1.999
| 3 P 3s —18.600 1.750
FExl _E  E=BrSbTe 3p —14.000 1.300
E” NE B 2s —15.200 1.300
b b 2p —8.500 1.300
the subscripta andb being used to denote axial and basal C 2s —21.400 1.625
fluorine atoms. 2p —11.400 1.625

The population analyses were performed using the YAe-
HMOP extended Hekel packagé® The extended Fekel
parameters used in this study are summarized in Table I. The On examination of the extended kel parameters
Amsterdam Density FunctiondADF) packagé' was used given in Table I, we note that the E—F interaction can be
to generate molecular geometries for input to the extendedubdivided into two groups of basis orbital interactions. The
Huckel calculations. The ADF calculations were performedE(s)—F(p) and E@)—F(p) interactions involve basis orbit-
using the Vosko—Wilk—Nusair parametrization of the LBBA  als with a modest energy separation and thus operate close to
with gradient corrections using the parametrizations of thghe regime around the overlap population maximum in Fig.
Becke(exchangg? and Perdewcorrelation.’* A triple zeta 1. Thus, we expect the relative magnitudes o5)E(F(p)
basis sef{ADF database IY was used to model all atoms. and E@)—F(p) overlap populations to qualitatively mirror
The ADF optimized fluoride geometries were in reasonablghe corresponding Hamilton populations.
agreement with previously reported geometfies. In contrast, the EY)—F(s) and Ef)—F(s) interactions

For these, and all other main group compounds, ghe Operate in a regime toward the left-hand extreme of Fig. 1;
andp basis orbitals on one atomic center will interact with we do not expect that these overlap populations will reflect
both thes and p orbitals on neighboring centers. Thus therethe corresponding Hamilton populations.
are four separate interactions that must be considered when This is indeed what we find on examination of thes,

forming homonucleatschemet) s—p, and p—p components of E—F bonding in ERE
=Br,Te,Sh. Consider, for instance, Brf, bonding. From

np === n’p Table 1l we calculate that thg—p component of the
Br—F,yia Overlap population is greater than tees compo-
E nent by a factor of 5.1, in contrast to the more modest in-
4 crease in Hamilton population by a factor of 2.5. This sizable
ﬁ discrepancy is due, primarily, to the energetically very low
) lying F(2s) basis orbital, which transforms a relatively small
s—s overlap population into a significant Hamilton popula-
tion via the Wolfsberg—Helmholtz “energy weighting”
given in Eq.(10).
If we examine the Brg)—F(p) and Br({p)—F(p) compo-
5 nents of the Br—k;, interaction, we note that for basis or-
n’p bital interactions involving relatively modest energy separa-
n’s

ns
and heteronucledischemeb)

>
]

np —/——

tions the overlap and Hamilton population ratios for these
components of the interaction are more similar at 1:3.8 and
1:3.0, respectively.

If we note that the Bi§)—F(p) and Br(p)—F(p) inter-
actions involve basis orbitals separated by 4 and 5 eV,
respectively—a small separation by extended chkél
standards—we conclude that even for such interactions
Hamilton and overlap population descriptions of orbital in-
teractions can differ significantly.

ns

compounds.

Let us begin by analyzing the-s, s—p, andp—p con-
tributions to bonding within the extended kel approxima-
tion for both the axial and basal E—-F bond&=Br,Te,Sh.
The E-F interactions here generally fall into the pattern of
scheme5. The s—s, s—p, and p—p contributions to axial B. The P, cluster
and basal E-FE=Br,Te,ShH bonding are given in Table Il Now let us turn our attention to a somewhat different
for both Hamilton and overlap population analyses. situation, P—P bonding in the tetrahedPal cluster. Scheme
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TABLE II. Decomposition of M—F bonding by Hamilton and Mulliken TABLE IIl. Hamilton and Mulliken population analysis of P—P bonding in
overlap population analysis for the isoelectronic square pyramidal fluoridesetrahedralP,.
BrFs, [TeFRs] ™, and[SbR]%".

Interaction HP/eV Relative HP OP/e Relative OP

Br—Foua Br—Poaca s—s —2.41 215 0.074 1.90
Interaction HP/eV OoP HP/eVv OoP s—p —-1.12 1.00 0.039 1.00
p—p -10.84 9.68 0.442 11.33
Br(s)—F(s) -2.00 0.035 2.38 -0.042
Br(s)—F(p) -1.66 0.047 1.41 —0.040
Br(p)—F(s) -4.17 0.080 -4.80 0.092
Br(p)-F(p) —4.96 0.179 —3.50 0.127 Hamilton population analysis as a versatile tool for detailed,
Te—Faxa Te~Fbasa albeit semiquantitative, analysis of chemical bonding. This
Interaction HP/eV oP HP/eV oP belief is founded on the success of overlap population
Te(s)—F(s) 381 0.068 166 —0.030 ar_1a|_ysi5—a formalism that, as we have seen, is incorporated
Te(s)—F(p) —2.36 0.069 053 —0.016 within the Hamilton population concept.
Te(p)—F(s) —2.74 0.052 —5.58 0.106 Our evaluation of Hamilton population analysis contin-
Te(p)—F(p) —4.09 0.141 —-381 0.131 ues and we suspect that the full utility of Hamilton popula-
Sb—Faa Sb—Fasa tion analysis as a transparent semiquantitative covalent bond-
Interaction HP/eV oP HP/eV opP ing descriptor will only become apparent as the number of
SbE)_F(©) o 0.050 Loa T0.035 applications of this bonding descriptor mounts in the litera-
Sb(s)—F(p) ~1.11 0.034 077  -0.024 ture.
Sh(p)-F(s) —-4.77 0.093 —-4.70 0.092
Sb(p)-F(p) —3.30 0.124 —2.33 0.087 ACKNOWLEDGMENT
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