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The bonding in the relatively complex La12Mn2Sb30 alloy
structure is analyzed with a retrotheoretical/building up process,
implemented through a molecular orbital analysis of the various
sublattices and the composite structure. In the antimony part of
La12Mn2Sb30 there are three relatively noninteracting networks:
a three-dimensional Sb20 sublattice, an Sb6 strip, and a one-
dimensional array of isolated Sb atoms (of Sb4 stoichiometry).
A Zintl-type approach, modified for the clearly hypervalent
nature of locally linear and square-planar Sb environments, leads
to an initial partitioning of the electrons among the Sb sublatti-
ces; this electron counting eventually turns out to be in reason-
able agreement with extended Hückel calculations. The
electronic structure of the three-dimensional Sb20 sublattice in
La12Mn2Sb30 is derived theoretically from a two-dimensional
square Sb sheet through first kinking the square sheet at every
fifth diagonal line and then stacking the sheets, with Sb–Sb bond
formation, into the third dimension. For the Sb6 strips a second-
order Peierls-type distortion of symmetrical vertex-sharing
rhombi leads to the slightly asymmetrical strip structure ob-
served. The d-block splitting of the Mn ions (in an unusual
bicapped tetrahedral Sb environment) is described by a molecu-
lar model; arguments are given for localized bonding at Mn.
There are significant La–Sb network interactions. The ability of
the Sb networks in this structure to act as electron reservoirs is
supported by our calculations. ( 1998 Academic Press

A new series of ternary compounds with the general
formula RE

6
MSb

15
(RE"La,Ce and M"Mn,Cu,Zn)

were recently synthesized and characterized by Rogl, Cor-
dier, and co-workers (1). All compounds in the series are
isostructural, crystallizing in space group Imm2. Some of the
alloys (Ce

6
MnSb

15
and Gd

6
ZnSb

15
) undergo antiferromag-

netic ordering of the rare earth metal moments below 15 K,
while the others remain paramagnetic down to 5K. The rare
earth metals were found to be in oxidation state 3# in all
alloys, based on their magnetism. In the case of Ce

6
MnSb

15
,

a high-spin 3d5 configuration was suggested for Mn from
magnetic susceptibility measurements.
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Two views of the unit cell and the crystal structure of
La12Mn2Sb30 (there are two formula units per unit cell) are
shown in Fig. 1. The structure is moderately complex and
intriguing. There are six types of Sb atoms, labeled Sb4—Sb9.
Atoms Sb4, Sb5, and Sb8 form two-dimensional kinked
sheets (Fig. 2a), which can be derived from an idealized
square sheet of Sb by folding at every fifth diagonal line.
Square sheets of antimony are found in numerous rare earth
antimony binary and ternary phases (2—10). These two-di-
mensional folded sheets are stacked into a three-dimen-
sional Sb20 network (Fig. 2b) through Sb8—Sb8 bonds of
length 2.88 As . For comparison, a typical Sb—Sb single bond
length (11) is 2.87 As .

The next structural element perceived in these phases
consists of one-dimensional strips (a ‘‘side’’ view, relative to
Fig. 1, of one of these ribbons containing Sb7 and Sb9 is in
1) of (Mn4)1@2Sb6"Mn2Sb6 stoichiometry. The Mn sites
were reported to be half-occupied, which is the reason for
writing the stoichiometry as we do. The Mn ions are sur-
rounded by Sb in an approximate bicapped tetrahedral
coordination, not a typical six-coordinate geometry.

Finally, large channels present in the three-dimensional
network of (Sb20) (Mn2Sb6) (see Figs. 1b, 2b) are filled with
one-dimensional arrays of La triangles at a distance of
4.31 As between the triangles. The prismatic holes created
by consecutive La triangles are occupied by Sb6 atoms.
An analogous arrangement of Zr3 triangles sandwiching
Sb atoms was reported earlier (12). Putting all these
substructures together, La12Mn2Sb30 may be written as
(Sb20) (Mn2Sb6)(La12) (Sb4).



FIG. 1. (a) Unit cell of La
12

Mn
2
Sb

30
. (b) Perspective view of the crystal structure of La

12
Mn

2
Sb

30
: Sb, small spheres; La, medium size spheres;

Mn, large dark spheres, half-occupied.
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A RETROTHEORETICAL ANALYSIS

The variety of antimony substructures, vastly different in
their dimensionality, attracted us to these molecules. In this
paper we examine the electronic properties of La12Mn2Sb30
by means of an approximate molecular orbital method, the
extended Hückel theory (13—15). Our procedure is to de-
compose the crystal structure of La12Mn2Sb30 into simpler
substructures, independently analyze the latter, and then
reassemble them to gain an understanding of the electronic
structure of the alloy. Here is how this ‘‘retrotheoretical
analysis’’ goes (Fig. 3).

First, the La atoms are removed from the alloy, followed
by removal of Mn atoms. In the remaining Sb30 three-
dimensional network there may be seen three relatively
noninteracting substructures, namely, the three-dimen-
sional Sb20 lattice (Fig. 2b), one-dimensional Sb6 strips (see
1, the Sb part only), and Sb4 one-dimensional arrays of
non-interacting Sb centers. Proceeding with the ret-
rotheoretical analysis, we dissect the Sb20 substructure and
then reconstruct it from two-dimensional kinked Sb sheets
(Fig. 2a), which in turn may be derived from an idealized
square lattice of Sb. At this point we reach a familiar entry
point: the electronic properties of square lattices of main
group elements that have been extensively studied (16). The
one-dimensional Sb6 strip (1, Sb part only) may be derived
from an easily analyzed chain of vertex-sharing rhombi by
a sliding motion of the central Sb9 atoms. We will also
investigate the possibility of a Peierls-type sliding distortion
(17) leading to the real strip geometry. The last (and simple-
st) Sb substructure is the one-dimensional array of widely
separated (4.3 As ) Sb6 atoms.

At a first glance, our retrotheoretical approach may seem
a convenient but abstract tool for analyzing the La12Mn2
Sb30 structure. But this is not so; the Sb substructures that
are intermediate stages in the disassembly are closely related



FIG. 2. (a) Two-dimensional kinked sheet of Sb. (b) Three-dimensional Sb
20

substructure.
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to real Sb substructures found in other compounds. We
already mentioned the existence of square sheets of anti-
mony in many rare earth metal antimony phases (2—10) and
a one-dimensional chain of Zr3 triangles with antimony
atoms in the prismatic holes (12). Corbett and Garcia re-
ported two undistorted Sb3 strips connected sidewise in the
a-ZrSb2 structure (12). Linear isolated Sb3 fragments were
found in Eu14MnSb11 (18). The bonding in the
La12Mn2Sb30 substructures sheds light on similar Sb sub-
structures found in other compounds and provides an entry
point for a forthcoming general comparative study of Sb
substructures in rare earth metal antimony binary and
ternary phases.

ELECTRON COUNTING IN THE ANTIMONY
SUBSTRUCTURES

What charges might one assign to different substructures
of La12Mn2Sb30? This material is an alloy and the
electronegativities of the elements involved are not very
different from each other. On the other hand, magnetic
measurements indicate classical formal charges for rare
earth metals and Mn(1). Therefore, we are led to a Zintl-
type approach in assigning the charges to different Sb sub-
structures. Twelve tripositive La atoms would contribute 36
electrons to the Sb sublattice. Two Mn atoms were found to
be in the 2# oxidation state for the Ce analog of our
compound. If we presume the same degree of formal elec-
tron transfer in La12Mn2Sb30, the Sb subnetwork should be
formally written as Sb40~30 .

The difficult task is to divide the 40! charge among the
three Sb substructures. The Sb6 atoms in the Sb4 chain are
well isolated from each other and, therefore, may be confi-
dently assigned a formal 3! charge to complete octets
around them (for a total of 12! per unit cell). After this
things become less obvious.

The one-dimensional Sb6 strips are constructed from side
and central Sb atoms with presumably different electron
counts. Since the central atoms of the strips are nearly
square-planar, we are led to make an analogy to known,
hypervalent, late main-group compounds. To derive a rea-
sonable electron count for the strip, we start first from the
molecular hypervalent square-planar XeF4 (2). The bonding
in this molecule is pretty well understood in terms of elec-
tron-rich three-center bonding (19). In a hypothetical dimer,
derived from XeF4 by sharing vertices, one has to replace
bridging fluorines with oxygens if one wants to preserve the
same electron count (formally Xe4`, 3). Continuing this line



FIG. 3. Schematic representation of ‘‘retrotheoretical’’ disassembly of
La

12
Mn

2
Sb

30
. A side view parallel to the c axis is shown.

BUILDING UP COMPLEXITY FROM STRIPS AND SHEETS 11
of reasoning, a very hypothetical polymer of XeO
2

stoichio-
metry (4) should have a bonding pattern similar to the
original XeF

4
molecule (two three-center four-electron

bonds in the plane, plus two lone pairs per Xe). We assume,
just as a starting point, that the Sb

3
strip is isoelectronic to

the hypothetical XeO
2

polymer. This suggests a 1! charge
on the side Sb atoms and a 3! charge on the central Sb
atoms (Sb5~

3
) (5). Since there are two repeat units of the

strips in the unit cell of La
12

Mn
2
Sb

30
, the strips are

postulated (at this simplistic stage, before detailed calcu-
lations) to carry 10 negative charges per unit cell (Sb10~

6
).

Linkage of the (still very hypothetical) one-dimensional
XeO polymers (4) by sharing the remaining vertices will
2

produce a two-dimensional square sheet (6). One has to
replace doubly connected oxygen atoms by quadruply con-
nected carbon atoms in order to preserve the electron count
at Xe of Xe4` . There are then on the average (8#4)/2"6
electrons per site in the hypothetical XeC square sheet (20),
which corresponds to a 1! charge per Sb for the analogous
Sb square sheet. Note that, as in XeF

4
, this electron count

implies two lone pairs on each Sb atom (equivalent to ns
and np

z
orbitals). Jeitschko and co-workers, based on their

experimental results, assigned one electron per long Sb—Sb
bond in the Sb substructures, which also led them to a 1!
charge on Sb in the square sheet (9, 21). The overall charge
for the unit cell stoichiometry is Sb20~

20
. Kinking of the

square sheet at every fifth diagonal line does not change the
electron count for the system.

To form a bond between the sheets, as is observed, re-
quires oxidation. Structure 7 illustrates this; one cannot
form a bond between two lone pairs (at the hypervalent
antimony atoms of the kinked sheet), but needs to remove
one electron per Sb. For the sheet this requires removal of
one-fifth of the negative charge of Sb20~

20
.

The reasoning pursued here, the hypervalent extension of
the Zintl concept, leads to a 16! charge on the Sb

20
substructure. The total charge on the Sb

30
subnetwork

becomes 38!, 2 electrons short of the required 40!. Two
electrons out of a total of 200 electrons in the unit cell is not
much. So perhaps with a little reduction, the electron counts
derived above might serve as reasonable starting point.
Another viewpoint is that we might as well see what
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computations give for charges on the various sublattices.
One of the referees pointed out that the Mn occupancy in
the experimental study may not have been refined, so there
might be some transition metal nonstoichiometry, altering
the electron count (22). Perhaps the extended Zintl count is
not unrealistic.

HOW TO JUDGE WHETHER AN Sb–Sb BOND IS PRESENT

Throughout this paper we are faced with making judg-
ments whether an Sb—Sb bond is present and, if so, how
strong it is. This is a theoretical question with no unambigu-
ous answer. A calibration is in order. We approach it by
calculating a measure of bond strength, the Mulliken over-
lap population (23), as a function of distance for some
diatomic molecular systems. Quite unambiguously there is
no Sb—Sb bond in Sb3~ interacting with Sb3~ (isoelectronic
to a Kr—Kr interaction); there should be a single bond in
Sb4~

2
(isoelectronic to Br—Br); and a double bond in Sb2~

2
(as in O

2
); and a triple bond in the Sb

2
molecule analogous

to N
2
. Figure 4 shows computed Sb—Sb overlap populations

as a function of separation; note how they differ. As we
encounter overlap populations values calculated for various
Sb—Sb bonds in the La

12
Mn

2
Sb

30
structure, we use these

calibration curves as standards for estimating bond multi-
plicity.

THE SQUARE-PLANAR Sb

Consider the band structure (Fig. 5c) of a square sheet of
Sb, located in the xy plane with an Sb—Sb separation of
FIG. 4. Overlap population (OP) curves for Sb6~
2

, Sb4~
2

, Sb2~
2

, and Sb
2
.

3.08 As , an average of those in the sheet (Fig. 5b). The Fermi
level is tentatively specified at that for Sb1~ for reasons
given above. A qualitative discussion of the bands for a
square lattice may be found in a book by one of us (24). The
crystal orbitals at different symmetry points are drawn in
Fig. 6. The p

z
band (z is perpendicular to sheet) does not mix

by symmetry with other bands for any k in the reciprocal
space. It is contained within the !13 to !8-eV energy
window and is fully occupied for this Sb1~ electron count,
as expected from our comparison to hypervalent XeF

4
(the

p
z
orbital is the Xe lone pair combination higher in energy).

The p
x
and p

y
bands are doubly degenerate at Brillouin zone

special points ! and M and are not allowed to interact by
symmetry with the s band at those points. At !, the zone
center, the p

x
and p

y
bands are p antibonding and n bonding

(24); they are therefore higher in energy than the p-bonding
s band.

Along the !—X symmetry line, the degeneracy of p
x

and
p
y

bands is broken and the p
x

and s bands are allowed to
mix by symmetry. At X, the p

x
band is p and n bonding and

lies significantly lower in energy than the p
y
band, which is

p and n antibonding. Of course, from ! to ½ the results are
analogous, with the roles of p

x
and p

y
reversed. The band

structure along the !-to-M symmetry line is little more
complicated. It is convenient to define new basis functions
p
`

and p
~
, the sum and the difference of the original p

x
and

p
y
. The p

`
band belongs to the same irreducible representa-

tion as the s band along the !-to-M line and these two
bands mix with each other. The p

~
band remains ortho-

gonal to all other bands along that particular symmetry line.
The s, p

x
and p

y
, and p

z
contributions to the total density of

states (DOS) (25) of the Sb1~ square sheet confirm the
expected dispersions of these bands (only the p

z
contribu-

tion is shown in Fig. 5d).
The crystal orbital overlap population (COOP, an

energy-resolved overlap population) (25) curve between
neighboring Sb atoms is shown in Fig. 5e. Some Sb—Sb
antibonding states are populated for the electron count
specified for the sheet, lowering the total overlap population
from the maximum of 0.42 (for 4 electrons per Sb) to 0.23
(for 6 electrons per Sb, Sb1~). This overlap population is less
than half of the overlap population of 0.5 calculated for the
hypothetical Sb4~

2
molecule with a presumably single Sb—Sb

bond at the corresponding distance of 3.08 As (see Fig. 4).
This reduction of the bond strength is characteristic of the
hypervalent nature of Sb atoms. Our results are in qualitat-
ive agreement with the experimental work of Jeitschko and
co-workers (9, 21), who assigned a bond order of a half to
the longer Sb—Sb contacts in antimony subnetworks, in-
cluding the Sb square sheet.

The antibonding orbitals that lower the Sb—Sb OP from
its maximum value are the upper part of the p

z
band,

as well as the middle of the Ms, p
x
, p

y
N bands, which are

not nonbonding, but actually antibonding, as indicated



FIG. 5. (a) Brillouin zone. (b) Square sheet of Sb. (c) Band structure of the Sb1~ square sheet. (d) p
z
contribution to the total DOS. (e) Sb—Sb COOP

(solid line) and its integration curve for the interaction between neighboring atoms (dotted line).
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schematically for a one-dimensional chain cut out from the
sheet in 8. Thus, oxidation of the sheet (from Sb1~) would
strengthen bonds between Sb atoms. One has to be cautious
here; too much oxidation of the sheet would lead to a neu-
tral Sb net, which would prefer to be three- rather than
four-connected.

KINKING THE SQUARE SHEET OF Sb12 AND STACKING
THE SHEETS INTO A THREE-DIMENSIONAL NETWORK

We next calculated the electronic structure of the two-
dimensional (2D) kinked Sb sheet (Fig. 2a) with the Sb—Sb
distances taken from the original crystal structure of
La

12
Mn

2
Sb

30
. The sheet is then slightly distorted from the

hypothetical geometry of a 2D square Sb sheet derived by
kinking the idealized square Sb network at every fifth diag-
onal line.

The Sb4, Sb5, and Sb8 atom contributions to the total
DOS of the kinked Sb sheet were compared with the corres-
ponding contributions with the total DOS of the perfect
square Sb sheet to gauge the degree of perturbation of the
square sheet. Sb8 is the sheet atom that forms an intersheet
bond (see Fig. 1); the superposition of the integrated DOS
projections (not shown here) indicated that the effect of the
perturbation indeed is noticeable only for the corner Sb8
atoms.

The most interesting consequence of kinking of the
square Sb sheet is the formation of relatively localized lone
pairs on the corner Sb8 atoms, with attendant s—p

z
hybrid-

ization. The creation of directional lone pairs on pyramidal-
ization of square-planar molecules is well described else-
where (26). For example, a little of that s—p

z
mixing may be

seen in crystal orbital 14 at ! (Fig. 7). Note that this orbital
also has substantial Sb5 character. There are three more
crystal orbitals at ! with analogous directionality. These
orbitals are well prepared for interaction with each other on
stacking of two-dimensional sheets into a three-dimensional
network; Fig. 8a shows the contributions of p

z
orbitals to

the total DOS. Localization in energy is equivalent to local-
ization in real space (27). We are going to explore this
stacking of the sheets next.

So far we have lone pairs (p
z
) perpendicular to the kinked

sheet. If two such sheets are brought together, the interac-
tion of the filled lone pairs will be repulsive, as we argued
above (structure 7). One has to remove one electron from
each corner Sb p

z
orbital to allow bond formation. What is

happening is nothing unusual; the molecular equivalent
would be repulsion between two approaching Sb3~ ions,



FIG. 6. Crystal orbitals of the Sb1~ square sheet at !, X, ½, and M.
Only four unit cells are shown.

FIG. 7. Crystal orbital No. 14 of the kinked Sb sheet at !.

FIG. 8. p
z

orbital contribution to the total DOS of (a) 2D kinked Sb
sheet and (b) 3D Sb network.
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changed to an attractive interaction, the formation of
a p bond, on oxidation of each to Sb2~ (see 7). Of 20 atoms
in Sb20~

20
, only 4 are corner Sb8 atoms; therefore, the re-

moval of 4 electrons will reduce the charge to 16!. Fig-
ure (8) b shows clearly the Sb8—Sb8 bonding (p) and
antibonding (p*) state regions in the DOS of the composite
3D network, split significantly up and down from the lone
pair contribution in a single kinked sheet in Fig. 8a. We see
here the extended structure equivalent of simple single bond
formation, as shown schematically in 9.

Compared with kinking, the assembly of the Sb
20

three-
dimensional substructure (Fig. 2b) from the 2D sheets (Fig.
2a) is a significantly stronger perturbation, just because of
the bond formation between the sheets. We also probed the
degree of bond localization within the Sb network. One
good indication of a localized bond is the degree of conser-
vation of the bond’s COOP curve when a perturbation is
applied somewhere else in the system: the smaller the
change, the more localized the bond. We found that, al-
though immediately adjacent to the interacting Sb8 atoms,
even the Sb8—Sb5 bond COOP is not altered on stacking;
we therefore argue that bonding in the sheets is essentially
localized. The intersheet overlap population between Sb8
atoms (0.63) is significantly higher than various intrasheet
overlap populations between Sb atoms (around 0.25). The
Sb8—Sb8 overlap population is comparable to a single-bond
Sb—Sb overlap population in Sb4~

2
(Fig. 4).

The Fermi level passes through the antibonding region of
the intrasheet COOPs in the 3D Sb16~

20
network, but in

a COOP region that is Sb8—Sb8 nonbonding (Fig. 9). There-
fore, possible oxidation of the substructure would
strengthen the intra-sheet Sb—Sb bonds but leave intersheet
bonding unaffected.

We may summarize the preceding two sections as follows:
directional orbitals are created by kinking the square sheet
of Sb. These orbitals are well suited for interaction with each
other on stacking. The bonding in the sheets is strongly
localized; some oxidation should strengthen bonding in the
system.



FIG. 9. Sb8—Sb8 COOP (solid line) and its integration (dotted line) in
3D Sb16~

20
; the horizontal dotted line indicates the Fermi level for Sb16~

20
.

FIG. 10. Comparison of the band structures of the idealized (a) and the
real (b) Sb5~

3
. The movement in energy of important bands on distortion is

indicated by arrows.
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Sb3 ONE-DIMENSIONAL STRIPS

The second substructure of the Sb network consists of
one-dimensional Sb

3
strips 10. The central Sb9 atoms in the

chains are located somewhat asymmetrically with respect to
the side Sb7 atoms. The short Sb9—Sb7 distance is 3.00 As
and the long one is 3.50 As .

A more symmetrical structure 11 (which we shall call
idealized) may be related to the observed structure by a col-
lective sliding motion of the central Sb9 atoms (shown
exaggerated, in 11, with arrows). In the idealized strip the
central Sb9—side Sb7 distance is taken as 3.23 As , the mean of
the two real distances. It is quite natural to ask whether the
real structure is related to the symmetrical structure
through a Peierls-type sliding distortion, and this is the
question we examine next.

The band structure of the symmetrical Sb5~
3

strip, a chain
of vertex-sharing Sb rhombi (Sb7—Sb9—Sb7 angle 96°), is
shown in Fig. 10a. The Fermi level is calculated for a 5!
charge per Sb

3
unit, as discussed in the Introduction.

We analyze next the sliding motion of the central Sb
atoms in the idealized Sb

3
strip. The main consequence of

such a sliding is the loss of the symmetry plane perpendicu-
lar to the polymer (x) axis. This results in mixing of the
bands that were not allowed to interact at ! and X. This
effect is important for the highest filled and lowest unfilled
bands, Nos. 10 and 11. Bands 10 and 11 of the idealized
chain repel each other strongly on sliding, forming bands
which are less and more antibonding bands, respectively
(Fig. 11). The interaction is strongest at ! because of the
small energy difference between these bands (see Fig. 10b).

Band 10, occupied by two electrons, contributes 1.24 eV
to the total stabilization of 1.31 eV on sliding, indicating
that the interaction of bands 10 and 11 plays by far the
dominant energetic role in the distortion. This kind of
interaction of filled and unfilled bands, leading to a distor-
tion, is the solid-state analog of a second-order Jahn—Teller
distortion (28). We also carried out calculations on a corres-
ponding distortion of the strips in the full crystal structure
of La

12
Mn

2
Sb

30
. The distorted (real) structure is still fa-

vored over the idealized one by 0.8 eV.
The positions of the side Sb7 atoms of the ribbon may be

imagined fixed by Mn and La in the crystal structure of
La

12
Mn

2
Sb

30
. The central Sb atoms can move relatively

easily only in the plane of the strips, their ‘‘out-of-plane’’
motions being restricted by the La atoms. Keeping this in
mind, we calculated in addition to the sliding motion (struc-
ture 11 and Fig. 12a) three other possible motions of the
central atoms: a pairing motion (Fig. 12b), all central Sb
atoms sliding ‘‘up’’ in the y direction (Fig. 12c), and the
central Sb atoms moving alternately up and down in the



FIG. 11. Interaction of crystal orbitals 10 and 11 at ! in the sliding
distortion. The first symmetry label refers to orbitals symmetric and anti-
symmetric with respect to the xz plane; the second, with respect to the yz
plane. The distortion removes the second plane.

FIG. 12. Different distortions of the central Sb atoms in the doubled
unit cell: (a) sliding distortion, (b) pairing distortion, (c) all-up distortion,
(d) up-down distortions. *E indicates the total energy gain per two unit
cells compared with the symmetric structure.
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same y direction (Fig. 12d). We restricted ourselves to pos-
sible distortions in the doubled unit cell. In all cases the
short Sb—Sb distances were made 3.0 As and the long ones
3.5 As .

Our results show that indeed the sliding motion first
studied is the most favorable one energetically. The pairing
distortion is the least favored among the distortions that we
considered. When all central Sb9 atoms move up in the
y direction, one is left effectively with a kinked Sb chain on
the one side and isolated Sb atoms on the other side. This
deformation is comparable energetically to the structure
produced by the up-and-down motion of the central Sb
atoms. The latter motion creates Sb

3
‘‘trimers’’ as in the real

structure, but arranged differently in the chains. The relative
instability of the last two structures (Figs. 12c, 12d) com-
pared with the real strip from La

12
Mn

2
Sb

30
, is not very

great, indicating the possibility of their realization in other
compounds. An analog of the distortion of Fig. 12c is found
for the Sb

4
strips (instead of Sb

3
) in the b-ZrSb

2
structure

(12).

PUTTING THE Sb SUBSTRUCTURES TOGETHER

We have discussed in detail the electronic structure of the
three-dimensional Sb16~

20
network and the one-dimensional

Sb5~
3

strips. The third Sb substructure is the simplest by far;
it consists of one-dimensional chains with a distance of 4.3 As
between the Sb6 atoms. The Sb6 atoms are essentially non-
interacting at such a large distance. We might mention here
that there exist rare earth metal antimony phases with linear
Sb chains that do interact (7, 21), but this is not the case in
the structure we study.

The three Sb substructures are effectively isolated from
each other in the crystal of La Mn Sb and there are no
12 2 30
significant interactions between them. We assigned a 16!
charge to the Sb

20
network, a 10! charge to the Sb

6
strips,

and a 12! charge for isolated Sb
4
, which adds up to 38!.

The actual charge of the Sb
30

substructure is 40!, deter-
mined by a ‘‘Zintl count’’ from the charges on La and Mn.
This small electron excess moves up the Fermi level slightly.
For Sb40~

30
in the composite Sb sublattice, the Fermi level

was calculated at !5.26 eV.
The question is which antimony sublattice is reduced? All

bands of the isolated Sb6 atoms (Sb3~) are already com-
pletely filled at a Fermi energy of !10.4 eV. For the Sb5~

3
strips, the lowest point of the empty bands 11 and 12 is at
a rather high !4.25 eV (see Fig. 10a). Therefore these bands
remain unfilled for the Fermi level of !5.26 eV in Sb40~

30
and our analysis of the second-order Jahn—Teller distortion
in the strips will apply in the three-dimensional lattice. The
Fermi level for the individual 3D Sb16~

20
network was found

at !5.91 eV. It is this network that is probably reduced by
addition of two extra electrons to the Sb substructure. We
pointed out earlier that the Fermi level for 3D Sb16~

20
passes

through the antibonding intrasheet but mainly nonbonding
intersheet (Sb8—Sb8) states. As a consequence, the two-elec-
tron reduction of this network diminishes the Sb—Sb intra-



FIG. 13. Local environment of Mn in La
12

Mn
2
Sb

30
.
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sheet overlap populations by 13%, while the intersheet
overlap populations are reduced only by 1.5%.

INTERACTION OF Mn ATOMS WITH THE Sb30

SUBLATTICE

Our next step is the insertion of two Mn atoms into the
unit cell of the Sb

30
. In the language of molecular inorganic

chemistry, we can imagine that the 3D Sb
20

, the 1D Sb
3
,

and the 0D Sb substructures act as separate ligands in the
subsequent interaction with Mn and La. The Mn sites were
reported to be half-occupied; we choose the Mn sites in such
a way that all the ‘‘on top’’ positions in structure 1 are
occupied and all the ‘‘on bottom’’ positions are empty. The
Mn atoms in the crystal structure of La

12
Mn

2
Sb

30
are far

apart from each other and the particular choice of the Mn
sites did not alter the results of the calculations. The local
environment of Mn in the crystal structure is shown in
Fig. 13. That local coordination of Mn may be described
roughly as a distorted bicapped tetrahedron of Sb atoms.
The orbital pattern in that unusual coordination geometry
was discussed by one of us earlier (29, 30).

We assign an 8! charge to molecular MnSb
6

for the
following reasons. Mn is assumed to be 2#, as argued at
the outset of the paper. An octet then is completed around
each antimony ligand, leading to a 3! charge on each of
the ‘‘isolated’’ Sb7 atoms and a 1! charge on Sb5 and Sb8
(12). The reason for the 1! charge is that Sb5 and Sb8 are
part of a (kinked) square net; they are bonded to each other.
As 12 shows we are modeling the four Sb5 and Sb8 ligands
as an Sb4~

4
ring. The important bond distances and angles

are given in Fig. 13; the Mn coordination sphere is quite
irregular both in angles and in distances to the ligating
antimony atoms.

There are several ways to approach the Mn bonding in
this model. The way we have found simplest is to build up
the final geometry by interaction of a d5 MnSb4~

2
fragment

with a puckered Sb4~
4

ring, which in turn is constructed
from a square-planar ring. This assembly is indicated sche-
matically in 13. The coordinate system in the composite
molecule is chosen in such a way (Fig. 13) that the x axis
passes inbetween the Mn—Sb equatorial bonds.

The actual interaction diagram is given in Fig. 14. The
Sb4~

4
orbitals differ little from those of the square-planar

ring; essential to the interaction is the all-filled cyclo-
butadienoid ‘‘n’’ set (one below two below one) of orbitals 7,
10, 11, and 12 of this fragment (Fig. 15). The MnSb4~

2
orbitals are those typical of an M¸

2
fragment (31). In the

energy window chosen there is present a four below one
pattern of d orbitals followed by a higher-lying hybrid of
mainly sp

x
character (Fig. 14, left).

Two of the d-block orbitals (d
yz

and d
x2~y2

) do not interact
much with Sb4~

4
orbitals. The interaction of d

xz
with one of

the middle orbitals of the ring n orbitals (No. 11, Fig. 15) is
excellent, but the resulting MO does not rise so high be-
cause of secondary interaction with a metal p

z
above the

energy window shown (32).
The other two orbitals, d

z2
and d

xy
, are destabilized by

effective interactions with Sb4~
4

orbitals. The net result is
two-below-one-below-two pattern in the MnSb8~

6
d block.

The final shape of orbitals is shown in Fig. 16. The only
atypical finding is substantial admixture of an Sb4~

4
frag-

ment p* orbital into the d
xy

; the symmetry-allowed mixing
of the corresponding ring n orbital (No. 10 in Fig. 15) is
hampered by poor overlap due to the Sb

4
ring puckering.

In the MnSb8~
6

model the Mn is formally 2#. However,
our calculations actually yield a charge of !2.02 on the
Mn. This is the result of substantial Mn—Sb mixing of all
Mn d-block orbitals into lower Sb levels. This mixing, in



FIG. 14. Interaction diagram between MnSb
2

and Sb
4

fragments.
Only relevant orbitals are shown; the rectangular blocks indicate orbitals
not discussed, mainly centered on the antimony atoms.

FIG. 15. nA set of orbitals of the Sb4~
4

fragment.
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turn, may be traced back to the near equality of Mn 3d and
Sb 5p H

ii
’s. Nevertheless, five electrons reside in predomi-

nantly Mn 3d orbitals, which is why we describe the molecu-
le still as an Mn d5 species. However, our extended Hückel
calculations cannot deal with the high-spin state adequate-
ly, nor give its energy well relative to a low-spin configura-
tion. For that one needs an accurate description of
electron—electron repulsion and exchange.

Having completed the analysis of the molecular model,
we move to the fully extended Mn

2
Sb36~

30
. The contribu-

tions of the Mn d block to the total DOS of the molecular
MnSb8~

6
complex and the extended (Mn

2
Sb

30
)36~ sub-

structure are quite comparable. This similarity argues in
favor of a significant localization of Mn—Sb bonds in the
extended substructure. The same conclusion emerges from
a comparison of the Mn—Sb COOPs for the molecular
model and the extended substructure (not shown here). The
localized nature of Mn bonding in the extended structure
is consistent with the existence of the magnetic moment
on Mn.

We compute a !3.3 charge on Mn for the Mn
2
Sb

30
substructure and a !2.5 charge on Mn in the full crystal
structure of La

12
Mn

2
Sb

30
. The Mn d block is nearly filled,

and this is inconsistent with the magnetic moment evidence.
If electron—electron repulsion had been explicitly taken into
account in the calculations, the double occupation of Mn
d orbitals might have been prevented. Since in reality the
Mn states are less filled than our calculation indicates, this
means that there has to be an effective reduction by a few
electrons of the rest of the atoms in La

12
Mn

2
Sb

30
. This

artifact of the extended Hückel calculations should not
cause a major problem, taking into account the large num-
ber of electrons (200) in the unit cell.

Finally, we may note that the introduction of Mn into the
Sb

30
network is a very small perturbation for that sublat-

tice. All Sb contributions to the total DOS of Mn
2
Sb

30
as

well as different Sb—Sb COOP curves remain virtually un-
changed on addition of the Mn ions. This result is a conse-
quence of the small Mn : Sb ratio and the strong localization
of the bonds in the structure.

INCLUSION OF La IN THE Mn3Sb30 SUBSTRUCTURE

The last step in the assembly of La
12

Mn
2
Sb

30
is the

addition of La atoms to the Mn
2
Sb

30
subnetwork. We

describe this last perturbation very qualitatively, because
the parameters for La that we use are not very well defined,
and f orbitals are not explicitly included.



FIG. 16. Mn d-block orbitals of the MnSb8~
6

model.

FIG. 17. Contributions of La and Sb6 atoms to the total DOS of
La

12
Mn

2
Sb

30
.
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The structure itself suggests that the inclusion of La
atoms into the Mn

2
Sb

30
substructure might be a significant

perturbation; there are large numbers of relatively short
La-to-other atoms bonds in La

12
Mn

2
Sb

30
. Indeed in our

calculations a substantial number of La levels are occupied;
the computed charges on La atoms are #0.55, quite far
from the formal 3#. Thus, the La atoms not only donate
their electrons, but also interact significantly with the neigh-
boring atoms. The La and Sb contributions to the total
DOS of La

12
Mn

2
Sb

30
are shown in Fig. 17. The interaction

with La lowers the Sb levels, especially near the Fermi level
(the Fermi level itself is somewhat lowered). Another conse-
quence of the interaction of La with other atoms is
a broadening of corresponding contributions to the total
DOS of La

12
Mn

2
Sb

30
. For example, the narrow bands of
the originally noninteracting zero-dimensional Sb6 atoms
in Mn

2
Sb

30
are significantly broadened and somewhat

lowered (see Sb6 contribution to the total DOS of
La

12
Mn

2
Sb

30
, Fig. 17, right). The interaction of La with

Sb6 is clearly illustrated by the lowest peak of the La
contribution to the total DOS of La

12
Mn

2
Sb

30
, a peak that

is in the same region as the Sb6 s contribution to the total
DOS (these peaks are indicated with arrows in Fig. 17). The
remaining small part of that sharp peak in the total DOS is
contributed by other Sb atoms.

The total DOS at the Fermi level is composed mainly of
the La and the 3D Sb

20
sublattices. For the latter sublattice

the main contribution comes from slightly antibonding and
nonbonding intrasheet bands. This results in the potential of
the 3D Sb

20
subnetwork to undergo redox reactions with-

out too much energy change. Mar and co-workers sugges-
ted the role of Sb substructures as electronic sinks, based on
their experimental data (7).

The position of the Fermi level (in a region of some DOS)
is consistent with the metallic properties of the alloy.

The various Sb—Sb COOP curves in the Mn
2
Sb

30
sub-

structure are not strongly affected by the inclusion of La.
This finding supports the idea of the strong localization of
the bonds in the crystal structure of La

12
Mn

2
Sb

30
.

We conclude this section by a description of the charges
on La and Sb in La

12
Mn

2
Sb

30
. An average positive charge

of 0.55 was found on the La atoms. These atoms are elec-
tropositive, yet involved in bonding. The zero-dimensional
Sb6 atoms were most negatively charged (!1.07), also in
agreement with the electronegativity and Zintl consider-
ations. The Mn atom charges were discussed above. The
central Sb atoms in the strips carry less negative charge
(!0.07) than the side Sb atoms (an average of !0.49). Only
half of the Mn sites are occupied in La

12
Mn

2
Sb

30
(see 1)

therefore, in the assumed ordered structure the side Sb
atoms in the strips are not equivalent to each other throughout



TABLE 1
Extended Hu~ ckel parametersa

Atom Orbital H
ii

(eV) f
1

c
1

f
2

c
2

Ref.

Sb 5s !18.8 2.323 (34)
5p !11.7 1.999

Mn 4s !7.5 1.80 (35)
4p !3.8 1.80
3d !8.7 5.15 0.5140 1.70 0.6930

La 6s !7.67 2.14 (36)
6p !5.01 2.08
5d !8.21 3.78 0.7765 1.381 0.4586

aThe f’s are the exponents of the Slater orbital basis set, the c
i
’s are the

coefficients in a double-f expansion.
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the crystal. The side Sb atoms connected to Mn are less
negative (!0.22) than those neighboring the Mn voids
(!0.75). The lone pairs on the Sb atoms near the voids are
not shared with Mn, which rationalizes their higher negative
charge. A related effect was observed for Sb5 (0.02 and 0.25)
and Sb8 (0.55 and 0.71) atoms in the kinked sheets. The Sb4
atoms in the kinked sheets are located further away from
the Mn sites and the difference between the charges of
nonequivalent atoms is much smaller (0.10 and 0.13).

CONCLUSIONS

We carried out a sequence of geometrical perturbations of
simple building blocks to assemble the full structure of
La

12
Mn

2
Sb

30
. First, the band structure of a square sheet of

Sb was analyzed in detail. Kinking of the sheet at every fifth
diagonal line produces directional orbitals at the corner Sb
atoms. These orbitals are mainly responsible for the interac-
tion between the sheets when stacked into a three-dimen-
sional network. We provided what we believe are
convincing arguments for strong localization of intersheet
bonds in the 3D Sb

20
substructure.

Another substructure in La
12

Mn
2
Sb

30
is the one-dimen-

sional strip of Sb
3

(Sb
6

in the doubled cell). A possible
sliding motion of the central atoms could produce more
symmetrical strips. The band structure and the crystal or-
bitals of a symmetrical 1D Sb

3
strip were built up. A distor-

tion in which the mirror plane perpendicular to the strip
axis is lost leads to mixing between the highest occupied and
lowest unoccupied crystal bands, which might be called
a second-order Peierls distortion. The stabilization (1.25 eV)
of the crystal band 10 due to the sliding motion of the
central Sb atoms is mainly responsible for the overall stabil-
ization (1.32 eV) of the distorted (real) strip. The last Sb
substructure consists of chains of noninteracting Sb3~

atoms.
We then put the three Sb substructures together. A calcu-

lation on the 3D Sb40~
30

sublattice confirms the absence of
interactions between the Sb

20
, the Sb

6
, and the Sb

4
sub-

structures. The inclusion of Mn2` atoms into Sb40~
30

does
not alter the Sb—Sb COOP curves in the latter substructure,
indicating once more the localized character of bonding in
the Sb network. We analyzed in detail the Mn d-block
splitting. The excessive !2.49 charge on Mn calculated for
the full La

12
Mn

2
Sb

30
structure is a consequence of the

absence of electron—electron repulsion and exchange in the
extended Hückel method.

The contributions of Sb atoms to the total DOS of
La

12
Mn

2
Sb

30
are diminished due to interaction with La.

The Sb—Sb COOP curves remain virtually unchanged, con-
firming once more the strong localization of the bonds in
the structure. The position of the Fermi level for the full
crystal structure of La

12
Mn

2
Sb

30
is in accord with the

conducting character of La Mn Sb .

12 2 30
The extension of our analysis of bonding in La
12

Mn
2

Sb
30

to other members of the RE
6
MSb

15
family is straight-

forward. Since the d blocks of Cu and Zn are well below the
ntimony p block, we expect both metals to approach
a d10 configuration, Cu1`, Zn2`. That places formally 38
and 40 electrons, respectively, into the Sb sublattice. If we
examine the states around the Fermi level, they are pretty
much Sb—Sb nonbonding, so that the main-group bonding
would not be affected by this small variation in electron
count. The same states are Mn—Sb antibonding, so if a rigid
band model is assumed the 40 electron phases would have
a weaker M—Sb bond.

The retrotheoretical/building up analysis, using the tools
of the perturbation theory coupled with molecular orbital
calculations, is shown to be a powerful tool for understand-
ing the seemingly complicated bonding in the three-dimen-
sional network of La

12
Mn

2
Sb

30
. Some of the antimony

substructures studied are common in other rare earth metal
antimony phases, and we will study the bonding patterns in
this intriguing family of compounds in contributions to
come.

APPENDIX I: COMPUTATIONAL DETAILS

All calculations were performed with the help of Yet
Another extended Hückel Molecular Orbital Package
(YAeHMOP), a program developed in our group by G.
Landrum (33). The standard atomic parameters were used
for Sb, Mn, and La. The parameters are listed in Table 1
with the corresponding references.
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